ANCO/UCSF Presents

Precision Oncology Symposium

November 9, 2019 Marines Memorial Club & Hotel, San Francisco

University of California San Francisco advancing health worldwide The opinions expressed in this publication are those of the participating faculty and not necessarily those of the Association of Northern California Oncologists (ANCO) or University of California, San Francisco (UCSF), its members, or any supporters of this meeting.

Copyright © 2019 Association of Northern California Oncologists. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, without first obtaining written permission from the Association of Northern California Oncologists.

ANCO/UCSF

presents

Precision Oncology Symposium

Saturday, November 9, 2019; 8:00AM-3:20PM Marines Memorial Club and Hotel, San Francisco

Agenda & Schedule

8:00 am 8:30 am 8:40 am 9:10 am	Registration and Continental Breakfast Welcome and Introduction Milestone and Technology Update Crossfire Session: Tissue vs. Liquid	W. Michael Korn, MD W. Michael Korn, MD James P. Grenert, MD, PhD David R. Gandara, MD
10:10 am	Cottee Break	
10:25 am 10:45am 11:45 am	Germline Testing Biomarkers in Immuno-Oncology Molecular Tumor Board	James M. Ford, MD David Spetzler, MS, MBA, PhD Moderator: David R. Gandara, MD Panelists : James M. Ford, MD James P. Grenert, MD, PhD Michael Zachary Koontz, MD W. Michael Korn, MD Philip C. Mack, PhD Pamela Munster, MD Sai-Hong Ignatius Ou, MD, PhD Sachdey Thomas, MD
12:30 pm	Lunch	
1:00 pm	Comprehensive Molecular Profiling: Clinical Utility • EGFR, ALK, KRAS, HER2 with Tissue Specificity • Biomarkers with Cross-Disease Relevance • Novel Targets: NTRK, FGFR, and Beyond	Sachdev Thomas, MD Philip C. Mack, PhD, Sai-Hong Ignatius Ou, MD, PhD
2:30 pm	Clinical Trials in Precision Oncology: Current State and Future Perspectives	Pamela Munster, MD
3:00 pm 3:20 pm	Patient Access To Molecular Testing Adjourn	Michael Zachary Koontz, MD

Precision Oncology Symposium

Program Faculty

Chair W. Michael Korn, MD University of California, San Francisco

> Faculty James M. Ford, MD Stanford University

David R. Gandara, MD University of California, Davis

James P. Grenert, MD, PhD University of California, San Francisco

> Michael Zachary Koontz, MD Pacific Cancer Care

> > Philip C. Mack, PhD Mount Sinai, New York

Pamela Munster, MD University of California, San Francisco

Sai-Hong Ignatius Ou, MD, PhD University of California, Irvine

David Spetzler, MS, MBA, PhD Caris Life Sciences

Sachdev Thomas, MD The Permanente Medical Group

Precision Oncology Symposium

Disclosure of Relevant Financial Relationships

The *Faculty* members have disclosed the following actual or potential conflicts of interest in regard to this program:

James M. Ford, MD, disclosed that he does not have any relevant financial relationships with any commercial interests.

David R. Gandara, MD, disclosed that he has consulted for AstraZeneca, Celgene, CellMax Life, Fujifilm, Roche-Genentech, Guardant Health, Inviata, IO Biotech, Lilly, Liquid Genomics, Merck, Samsung Bioepis, Pfizer.

James P. Grenert, MD, PhD, disclosed that he does not have any relevant financial relationships with any commercial interests.

Michael Zachary Koontz, MD, disclosed that he does not have any relevant financial relationships with any commercial interests.

W. Michael Korn, MD, disclosed that he is the Chief Medical Officer of *Caris Life Sciences;* has consulted for *Merck;* and, owns stock at *Caris Life Sciences*.

Philip C. Mack, PhD, disclosed that he has received a speaking honorarium from Guardant Health.

Pamela Munster, MD, disclosed that she does not have any relevant financial relationships with any commercial interests.

Sai-Hong Ignatius Ou, MD, PhD, disclosed that he has received a speaking honorarium from *Merck and Pfizer*. He has also disclosed that he has consulted for and received a speaker honorarium from *AstraZeneca, Roche-Genentech, Takeda/ARIAD, and Turning Point Therapeutics*.

David Spetzler, MS, MBA, PhD, disclosed that he is the President and Chief Scientific Officer of Caris Life Sciences

Sachdev Thomas, MD, disclosed that he does not have any relevant financial relationships with any commercial interests.

Acknowledgement of Financial Support

This activity is supported by:

AbbVie AstraZeneca **Bayer Oncology Bristol-Myers Squibb** Caris Life Sciences **Coherus Biosciences** Exelixis Foundation Medicine Genomic Health Heron Therapeutics Jazz Pharmaceuticals Merck Novartis Oncology Pfizer Oncology **Pharmacyclics** Tempus Labs & UC San Francisco Referral Liasion Services

Precision Oncology Symposium

Milestone and Technology Update W. Michael Korn, MD

Precision Oncology: Growing Complexity

Responses to the TRK inhibitor Larotrectinib

7

FDA Approval of Larotrectinib (Vitrakvi)

FDA U.S. FOO	D & DRUG			A to Z Inde Search I
Home Food Dru	gs Medical Devices	Radiation-Emitting Produ	ts Vaccines, Blood & Biologics	Animal & Vet
News & Events				
Home > News & Events >	Newsroom > Press Ann	nouncements		
FDA approv key genetic specific typ New drug Vitrakvi targe f SHARE Y TWEET in Lit	es an one driver of e of tumo ts specific recepto	Cology dru cancer, ra or r kinase that promot	g that targets ther than a ^{as tumors}	а
For Immediate Release	For Immediate November 26, 2018 Release			
Release	The U.S. Food an Vitrakvi (larotrectin have a specific ge	d Drug Administration nib), a treatment for ad enetic feature (biomarke	oday granted accelerated appr It and pediatric patients whose).	roval to e cancers

NRG1 Fusions: Constitutive Activation of HER3 Signaling

Fusions preserve EGF-like domain of NRG1 and transmembrane domain of fusion partner

Measurable response after 16 weeks of apatinib treatment in patient with NRG1-fusions positive cholangiocarcinoma and hepatic metastases

Jones et al., 2017

Precision Medicine and Imaging Clinical Cancer Research Sushma Jonna ¹ , Rebecca A. Feldman ² , Jeffrey Swensen ² , Zoran Gatalica ² , Wolfgang M. Korn ² , Hossein Borghaei ³ , Patrick C. Ma ⁴ , Jorge J. Nieva ⁵ , Alexander I. Spira ⁶ , Ari M. Vanderwalde ⁷ , Antoinette J. Wozniak ⁸ , Edward S. Kim ⁹ , and Stephen V. Liu ¹						
Sushma Jonna ¹ , Rebecca A. Feldman ² , Jeffrey Swensen ² , Zoran Gatalica ² , Wolfgang M. Korn ² , Hossein Borghaei ³ , Patrick C. Ma ⁴ , Jorge J. Nieva ⁵ , Alexander I. Spira ⁶ , Ari M. Vanderwalde ⁷ , Antoinette J. Wozniak ⁸ , Edward S. Kim ⁹ , and Stephen V. Liu ¹	Precision Medicine and Imaging	_			Clinical Cancer Researc	ch
Sushma Jonna ¹ , Rebecca A. Feldman ² , Jeffrey Swensen ² , Zoran Gatalica ² , Wolfgang M. Korn ² , Hossein Borghaei ³ , Patrick C. Ma ⁴ , Jorge J. Nieva ⁵ , Alexander I. Spira ⁶ , Ari M. Vanderwalde ⁷ , Antoinette J. Wozniak ⁸ , Edward S. Kim ⁹ , and Stephen V. Liu ¹ 0.0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% GBC (3/580) PDAC (3/623) RCC (1/211) Ovarian (3/686) NSCLC (25/9592) Breast (2/1106) Sarcoma (1/627) Other (1/937) Bladder (1/945) Bladder (1/945)	Detection of NRGI Gen	e Fusions	in Solia Tun	nors 😰		
0.0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% GBC (3/580) PDAC (3/623) RCC (1/211) Ovarian (3/686) NSCLC (25/9592) Breast (2/1106) Sarcoma (1/627) Other (1/937) Bladder (1/945) Bladder (1/945)	ushma Jonna', Rebecca A. Feldman Volfgang M. Korn ² , Hossein Borghae Jexander I. Spira ⁶ , Ari M. Vanderwalc nd Stephen V. Liu ¹	⁻ , Jeffrey Swens ^{i³, Patrick C. Maʻ de⁷, Antoinette J}	en~, ∠oran Gatalica ⁴ , Jorge J. Nieva ⁵ , . Wozniak ⁸ , Edward	a-, d S. Kim ⁹ ,	Check for updates	
GBC (3/580) 0.5% PDAC (3/623) 0.5% RCC (1/211) 0.5% Ovarian (3/686) 0.4% NSCLC (25/9592) 0.3% Breast (2/1106) 0.2% Sarcoma (1/627) 0.1% Other (1/937) 0.1% Bladder (1/945) 0.1%	0.0%	0.1% 0.2%	0.3% 0.4%	0.5%	0.6%	
PDAC (3/623) RCC (1/211) Ovarian (3/686) NSCLC (25/9592) Breast (2/1106) Sarcoma (1/627) Other (1/937) Bladder (1/945) Bladder (1/945)	GBC (3/580)	- I I	I	0.5%		
RCC (1/211) 0.5% Ovarian (3/686) 0.4% NSCLC (25/9592) 0.3% Breast (2/1106) 0.2% Sarcoma (1/627) 0.2% Other (1/937) 0.1% Bladder (1/945) 0.1%	PDAC (3/623)			0.5%		
Ovarian (3/686) 0.4% NSCLC (25/9592) 0.3% Breast (2/1106) 0.2% Sarcoma (1/627) 0.2% Other (1/937) 0.1% Bladder (1/945) 0.1%	RCC (1/211)			0.5%		
NSCLC (25/9592) 0.3% Breast (2/1106) 0.2% Sarcoma (1/627) 0.2% Other (1/937) 0.1% Bladder (1/945) 0.1%	Ovarian (3/686)		0.	.4%		
Breast (2/1106) 0.2% Sarcoma (1/627) 0.2% Other (1/937) 0.1% Bladder (1/945) 0.1%	NSCLC (25/9592)		0.3%			
Sarcoma (1/627) 0.2% Other (1/937) 0.1% Bladder (1/945) 0.1%	Breast (2/1106)	0.2%				
Other (1/937) 0.1% 41/21,858 (0.2%) Bladder (1/945) 0.1%	Sarco ma (1/627)	0.2%	Quarall fragma			
Bladder (1/945) 0.1%	Other (1/937)	0.1%	41/21,858 (0.	2%)		
	Bladder (1/945)	0.1%	,, (
CRC (1/1690) 0.1%	CRC (1/1690)	0.1%				

Detection of Clonal Dynamics by Cell-free DNA 63 y.o woman with metastatic sigmoid colon cancer, initially KRAS WT 1.0--80 MAF (%) - EGFR, KRAS MAF (%) - TP53 R175H 0.8 TP53 R175H 60 EGFR C291F 0.6 40 EGFR F404I 0.4 **KRAS Q61H** ·20 **KRAS G13D** 0.2 0.0 -0 100 200 250 300 350 50 150 0 Days Strickler et al., Cancer Discov., 2018

PolE mutations: Taking TMB to the extreme

- A 39 y/o man presented to UCSF GI Oncology with extensively metastatic colon cancer and PD on conventional chemotherapy.
- Patient in poor performance status, referred to hospice.
- Next-generation DNA sequencing revealed a pathogenic PolE P286R mutation as well as a large number of additional mutations.

Prolonged response to immunotherapy

• Single agent anti-PD-L1 therapy with pembrolizumab was initiated in December 2016.

October 2016

• Treatment ongoing, patient active and in good performance status.

Next Generation Profiling (NGP): Discovery of Clinically Relevant Signatures through Machine Learning

NGP FOLFOX Predictor

Patient Characteristics (Testing Dataset)

Characteristic	Benefit N=103 (%)	No Benefit N=61 (%)	р
Median Age	58	59	0.250
Female/Male	44/56	49/51	0.603
Colon/Rectal	93/7	77/23	0.003
Left/Right/unknown	35/42/23	51/38/11	0.069
Bevacizumab	100	100	1.000
Cetuximab	9	15	0.351

Precision Oncology Symposium

Crossfire Session: Tissue vs. Liquid James P. Grenert, MD, PhD and David R. Gandara, MD

Evolution & Expanding List of Guideline Recommendations for Genomic Testing in NSCLC

"The NCCN NSCLC Guidelines Panel strongly endorses **broader molecular profiling** with the goal of identifying rare driver mutations for which effective drugs may already be available, or to appropriately counsel patients regarding the availability of clinical trials. **Broad molecular profiling** is a key component of the improvement of care of patients with NSCLC)."

Genomic Alteration (i.e. driver event)	Available targeted agents with activity against driver event in lung cancer*
EGFR mutations	osimertinib, erlotinib, gefitinib, afatinib, dacomitinib
ALK rearrangements	alectinib, brigatinib, ceritinib, crizotinib, lorlatinib
HER2 mutations	ado-trastuzumab emtansine, afatinib
BRAF V600E mutations	dabrafenib + trametinib, vemurafenib
MET amplification/mutation	crizotinib
ROS1 rearrangements	crizotinib, ceritinib
RET rearrangements	cabozantinib, vandetanib
NTRK rearrangements	entrectinib, larotrectinib

NCCN Clinical Practice Guidelines. NSCLC. v3.2019.

	REVIEW ARTICLE	
	Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC	
	Christian Rolfo, MD, PhD, MBA, ^a Philip C. Mack, PhD, ^b Giorgio V. Scagliotti, MD, PhD, ^c Paul Baas, MD, PhD, ^d Fabrice Barlesi, MD, PhD, ^e Trever G. Bivona, MD, PhD, ^f Roy S. Herbst, MD, PhD, ⁸ Tony S. Mok, MD, ^h Nir Peled, MD, PhD, ^f Nobert Pirker, MD, ¹ Luis E. Raez, MD, ¹ Martin Reck, MD, PhD, ¹ Jonathan W. Riess, MD, ^b Lecia V. Sequist, MD, MPH, ^m Frances A. Shepherd, MD, ⁿ Lynette M. Sholl, MD, ⁶ Daniel S. W. Tan, MBBS, PhD, ¹ Heather A. Wakelee, MD, ⁶ Ignacio I. Wistuba, MD, ⁶ Mury W. Wynes, PhD, ⁵ David P. Carbone, MD, PhD, ¹ Fred R. Hirsch, MD, PhD, ⁴⁺ David R. Gandara, MD ^b	
Wl Tumor Genc	hat can Liquid Biopsy provide in November 2019 for NSCLC? omics & blood-based Tumor Mutational Burden (investigational)	
Adva	antages of plasma ctDNA over Tumor biopsy or re-biopsy:	
 Indicated when to 	umor tissue not available or high risk (or "plasma-first" situations)	
Reflects shed turr	nor DNA into plasma from all tumor sites, providing a "global perspective"	
 May abrogate 	e the issue of tissue heterogeneity and undergenotyping due to small sample	
Can determine m	echanism of resistance without biopsy, to guide subsequent therapy	
Can be repeated s	serially (longitudinal assessment) for response & early progressive disease	
 Relatively non-inv 	vasive & high acceptance rate by patients	
 Detection of Mini 	mal Residual Disease (i.e. after surgical resection)	

	REVIEW ARTICLE				
	Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC				
	Christian Rolfo, MD, PhD, MBA, ^a Philip C. Mack, PhD, ^b Giorgio V. Scagliotti, MD, PhD, ^c Paul Baas, MD, PhD, ^d Fabrice Barlesi, MD, PhD, ^e Trever G. Bivona, MD, PhD, ^f Roy S. Herbst, MD, PhD, ^e Tony S. Mok, MD, ^h Nir Peled, MD, PhD, ^f Robert Pirker, MD, ^j Luis E. Raez, MD, ^c Martin Reck, MD, PhD, ^f Jonathan W. Riess, MD, ^b Lecia V. Sequist, MD, MPH, ^m Frances A. Shepherd, MD, ⁿ Lynette M. Sholl, MD, ^o Daniel S. W. Tan, MBBS, PhD, ^b Heather A. Wakelee, MD, ⁶ Ignacio I. Wistuba, MD, ^f Murry W. Wynes, PhD, ^b David P. Carbone, MD, PhD, ^f Fred R. Hirsch, MD, PhD, ^{u+*} David R. Gandara, MD ^b				
WI Tumor Geno	What can Liquid Biopsy provide in November 2019 for NSCLC? Tumor Genomics & blood-based Tumor Mutational Burden (investigational)				
Adva	ntages of plasma ctDNA over Tumor biopsy or re-biopsy:				
• Indicated when tu	umor tissue not available or high risk (or "plasma-first" situations)				
Reflects shed turn	or DNA into plasma from all tumor sites, providing a "global perspective"				
May abrogate	e the issue of tissue heterogeneity and undergenotyping due to small sample				
Can determine me	echanism of resistance without biopsy, to guide subsequent therapy				
Can be repeated s	 Can be repeated serially (longitudinal assessment) for response & early progressive disease 				
Relatively non-inv	vasive & high acceptance rate by patients				
Detection of Mini	mal Residual Disease (i.e. after surgical resection)				

	REVIEW ARTICLE				
	Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC				
	Christian Rolfo, MD, PhD, MBA, ^a Philip C. Mack, PhD, ^b Giorgio V. Scagliotti, MD, PhD, ^c Paul Baas, MD, PhD, ^d Fabrice Barlesi, MD, PhD, ^e Trever G. Bivona, MD, PhD, ^f Roy S. Herbst, MD, PhD, ^g Tony S. Mok, MD, ^h Nir Peled, MD, PhD, ^f Robert Pirker, MD, ^j Luis E. Raez, MD, ^c Martin Reck, MD, PhD, ^t Jonathan W. Riess, MD, ^b Lecia V. Sequist, MD, MPH, ^m Frances A. Shepherd, MD, ^a Lynette M. Sholl, MD, ^o Daniel S. W. Tan, MBBS, PhD, ^b Heather A. Wakelee, MD, ^q Ignacio I. Wistuba, MD, ^f Mury W. Wynes, PhD, ^b David P. Carbone, MD, PhD, ^t Fred R. Hirsch, MD, PhD, th avid R. Gandara, MD ^b				
W Tumor Geno	What can Liquid Biopsy provide in November 2019 for NSCLC? Tumor Genomics & blood-based Tumor Mutational Burden (investigational)				
Adva	vantages of plasma ctDNA over Tumor biopsy or re-biopsy:				
Indicated when t	tumor tissue not available or biopsy is high risk (or "plasma-first" situations)				
 Reflects shed tun 	mor DNA into plasma from all tumor sites, providing a "global perspective"				
May abrogat	te the issue of tissue heterogeneity and undergenotyping due to small sample				
Can determine m	nechanism of resistance without biopsy, to guide subsequent therapy				
Can be repeated	I serially (longitudinal assessment) for response & early progressive disease				
Relatively non-in	nvasive & high acceptance rate by patients				
Detection of Min	nimal Residual Disease (i.e. after surgical resection)				

Precision Oncology Symposium

Germline Testing James M. Ford, MD

Next-Generation Approaches to Assessing Hereditary Cancer Risk in the Genome Era

James M. Ford, MD, FASCO Professor of Medicine/Oncology and Genetics Director, Clinical Cancer Genomics Stanford University School of Medicine

Clinical Cancer Center	Autosomal Dominant Inherited Cancer Syndromes		
Stanford Cancer Genetics Clinic	 Breast and Ovarian Cancer pancreatic, prostate Colon Cancer and Polyposis HNPCC (Lynch) FAP Polyposis Cowdens Peutz-Jehgers Juvenile Polyposis Other GI Cancers Gastric 	BRCA1&2 Chek2, ATM PALB2 MMR APC MYH PTEN STK11 SMAD4 BMPR1A CDH1	
Risk Assessment, Genetic	Pancreas MEN1 MEN2/MTC 	p16 Menin RET	
Counseling And Interventions For Members Of Cancer Families	VHLLi-Fraumeni	VHL p53	

Syndrome	Gene	Frequency	Breast Ca Risk
НВОС	BRCA 1 & 2	1/40 - 1/400	40 - 80%
Li-Fraumeni	p53	1/5000 – 1/50K	90%+
Cowden's	PTEN	1/100,000	25 – 50%
HDGC	CDH1	Very rare	~60% (lobular)
Peutz Jeghers	STK11/LKB1		44 – 50%
Lynch Syndrome	MMR	1/440	1 - 5

Genetics of Colorectal Cancer

Syndrome	Gene(s)
Lynch syndrome	MLH1, MSH2, MSH6, PMS2, EPCAM
Adenomatous polyposis	
Familial Adenomatous Polyposis(FAP)	APC
Attenuated FAP	APC
MYH-associated polyposis	MYH (biallelic)
Hamartomatous polyposis	
Peutz-Jeghers Syndrome	STK11
Juvenile Polyposis Syndrome	SMAD4/BMPR1A
Cowden Syndrome	PTEN

7

Familial Syndromes with Pancreatic Cancer

Syndrome	Gene	Frequency	PC Lifetime Risk
HBOC	BRCA 1 & 2	1/40 — 1/400	3 – 5%
FAMM	CDKN2A (p16)	rare	10 –19%
Peutz Jeghers	STK11		11 – 36%
Lynch Syndrome	MMR	1/440	4%

Multigene Panel Study

Hypothesis: A Next-Gen Sequencing multiple cancer-gene panel provides actionable results

150	FANGE	51/00
APC	FANCE	PMS2
ATM	FANCF	PRSS1
BLM	FANCG	PTCH1
BMPR1A	FANCI	PTEN
BRCA1	FANCL	RAD51C
BRCA2	LIG4	RET
BRIP1	MEN1	SLX4
CDH1	MET	SMAD4
CDK4	MLH1	SPINK1
CDKN2A	MLH2	STK11
EPCAM	MSH6	TP53
FANCA	MUTYH	VHL
FANCB	NBN	
FANCC	PALB2	
FANCD2	PALLD	
	Kurian, Ford e	t al. Journal of Clin

Multiple-Gene Panel Testing						
Study	N	Population	Race/Ethnicity	Gene Panel	Non-BRCA PVs	VUS
Kurian <u>I Clin Oncol</u> 2014	198	Met BRCA1/2 guidelines	70% White, 20% Asian	42 genes (Invitae)	11%	88%
Tung <u>Cancer</u> 2014	2,158	Cancer genetics clinic sample	Mostly White	25 genes (Myriad)	4%	42%
Desmond JAMA Oncol 2015	1,046	Cancer genetics clinic sample	82% White	25 genes (Invitae)	4%	41%
LaDuca Genet Med 2014	2,079	Clinical testing lab database	72% White, 2-3% other	13-24 genes (Ambry)	10%	25%
Maxwell Genet Med 2014	278	Breast cancer, age <40	69% White, 24% Black	22 genes (Agilent)	11%	19%
Selkirk Fam Cancer 2014	63	Cancer genetics clinic sample	81% White	13-24 genes (Ambry)	7%	20%
Couch J Clin Oncol 2014	1,824	Triple-negative breast cancer	97% White	17 genes (Agilent)	4%	NR
Churpek BrCa Res Trt 2015	289	Cancer genetics clinic sample	100% Black	10 genes (BROCA)	5%	<1%
Thompson J Clin Oncol 2016	2,000	Cancer genetics clinic sample	Not reported (Australia)	18 genes	4%	NR
Tung J Clin Oncol 2016	488	Breast oncology clinic sample	89% White	25 genes (Myriad)	5%	33%
Norquist JAMA Oncol 2016	1,915	Ovarian cancer, unselected	89% White	20 genes (BROCA)	4%	NR
Slavin <u>NPJ Breast Ca</u> 2017	2,134	Cancer genetics clinic sample	81% White	26 genes	8%	NR
Shimelis JNCI 2018	10,901	Triple-negative breast cancer	Most White; >1K Black	17-21 genes (Ambry)	6%	NR
Idos/Kurian <u>ICO Precis Onco</u> l 2018	2,000	Prospective clinical sample	39% Hispanic, 12% Asian	25-28 genes (Myriad)	8%	34%
 Informative results (pathogenic variants) increased by ~ two-fold Uninformative results (VUS) increased by ten-fold 						
PRESENTED AT: 2019 ASCO3 #ASCO19 #ASCO19 December of the address and the address of the address						

Multiple Gene Panels: Challenges New approach to Genetic Counseling Unexpected gene mutations in non-syndromic families (p53, CDH1) Variants of Uncertain Significance Common Genes with Low or Moderate CA Risk Clinical Utility and Impact on Care

What Could Possibly Go Wrong?
VOLUME 34 - NUMBER 34 - DECEMBER 1, 2016 JOITENAL OF CLINICAL OXYOLOGY OR LG IN ALL REPORT
Conflicting, Interpretation of Genetic Variants and Cancer Risk by Commercial Laboratories as Assessed by the Prospective Registry of Multiplex Testing Web Bahmada, Lawa Digiowani, Pagan Galdam, Kikad F. Bikab, Vigi Jooph, And K. Shaller, Ratherine L. Nahaman, July E. Gark, Regul J. Canck, Remark (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, M. Staw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Arran Categor of Mark Laware (Jeff, Mark E. Baham, and Suaw M. Drands) • Ar
Lawsuit: Woman had unnecessary mastectomy, hysterectomy based on mistaken diagnosis
Updated on October 24, 2017 at 11:35 AM Posted on October 23, 2017 at 6:13 PM

Genes with Screening or	Risk Reduction Guidelines
-------------------------	---------------------------

ACS, ACOG, ASCO, ClinGen, and/or NCCN Recommendations	Genes (n=48)
Annual screening breast magnetic resonance imaging	ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NBN, NF1, PALB2, PTEN, STK11, TP53
Earlier and more frequent colonoscopy/endoscopy	APC, AXIN2, BMPR1A, CHEK2, EPCAM, GREM1, MLH1, MSH2, MSH6, PMS2, MSH3 (homozygote, h.); MUTYH (h.), NTLH1 (h.), POLD1, POLE, PTEN, SMAD4, STK11, TP53
Risk-reducing mastectomy	BRCA1, BRCA2, PALB2, PTEN, STK11, TP53
Risk-reducing salpingo-oophorectomy, +/- hysterectomy	BRCA1, BRCA2, BRIP1, EPCAM, MLH1, MSH2, MSH6, PMS2, RAD51C, RAD51D
Risk-reducing colectomy	APC
Risk-reducing gastrectomy	CDH1
Other targeted screening (e.g., RCC, pheochromocytoma)	MEN1, NF2, RB1, RET, SDHAF2, SDHB, SDHC, SDHD, TSC1/2, VHL, TP53, WT1
PRESENTED AT: 2019 ASCO ANNUAL MEETING #Account of the other of the provide of the other other other other of the other othe	1 8

Germline Mutations in Pancreatic Cancer

Gene	Fold-Risk PC	Incidence in FPC		
BRCA2	3.5	17 – 19%		
BRCA1	2	2-3%		
STK11	132			
PALB2		2-3%		
АТМ		2%		
CDKN2A	13 - 38	10 – 17%		
MMR	0 - 8			
Prevalence of gBRCA1/2 mutations in all PC: 4 - 7% (12% AJ) Somatic BRCA1/2 mutations in 10% PC				

Turner			
Tumor Gr	oupings	(N=164)	
Tumor grouping	Overall (n=164)	Tumor grouping	Overall (n=164)
Gynecologic	64 (39.0)		15 (9.1)
Ovarian	49 (76.6)	Breast	15 (9.1)
Uterine	8 (12.5)	Sarcoma	11 (6.7)
Peritoneal	4 (6.3)	Skin	8 (4.9)
Fallopian tube	3 (4.7)	Squamous cell	5 (62.5)
Gastrointestinal	24 (14.6)	Merkel cell	2 (25.0)
Colorectal	11 (45.8)	Melanoma	1 (12.5)
Pancreatic	10 (41.7)	Head and Neck	5 (3.0)
Gastric	2 (16.7)	CNS/PNS	5 (3.0)
Esophageal	1 (4.2)	Other [†]	1 (0.6)
Genitourinary	16 (9.8)	† perivascular epithelioid	cell tumor (PEComa)
Prostate	9 (56.3)		
Bladder	6 (37.5)		
Kidney	1 (6.3)		

Summary and Conclusions

- ~10% of most common cancers will have potentially targetable DNA repair defects associated with germline genetic mutations
- Germline > Somatic alone
- Poorly predicted by age, family history
- Consider screening high-risk individuals
- Prognostic and predictive value
- Role for checkpoint inhibitors, PARP inhibitors, others

33

Stanford Cancer Genomics: Who

Molecular	Tumor	Board
-----------	-------	-------

Jim Ford Christina Curtis Ash Alizadeh Max Diehn Jim Zehnder Carlos Suarez Henning Stehr Rochelle Reyes Meredith Mills Alex Ooms Ivy Lau Meredith Gerhart

Director Co-Director Med Oncology Rad Oncology Molecular Pathology Molecular Pathology Clinical Coordinator/APP Research Coordinator Research Assistant Clinical Trials Coordinator Genetic Counselor

Cancer Genetics Clinic:

Jim Ford Director Allison Kurian Co-Director, Women's Cancers Uri Ladabaum **Gastrointestinal Cancers** Lead Genetic Counselor Kerry Kingham Nicolette Chun **Genetic Counselor** Rachel Hodan Genetic Counselor Meredith Gerhart **Genetic Counselor** Madeline Graf **Genetic Counselor** Courtney Rowe-Teeter Genetic Counselor **Rochelle Reyes** APP/PA Alexandra Ooms **Research Assistant** Cindy Ma **Research Assistant**

ant ant

Precision Oncology Symposium

Biomarkers in Immuno-Oncology David Spetzler, MS, MBA, PhD

Complex State of PD-L1 Testing: Caris Uses the Right Assay for the Right Patient

PD-L1 antibody IO Therapy	SP142 (Ventana) Atezoluzumab (Roche)	SP263 (Ventana) Durvalumab (Astrazeneca)	22c3 (Dako) Pembrolizumab (Merck)	28-8 (Dako) Nivolumab (BMS)	73-10 (Dako) Avelumab (Merck KGaA)
Non-small cell lung cancer (NSCLC)	Complementary Threshold: TC ≥50% or IC ≥10%	-	Companion TPS ≥1	Complementary Threshold: TC ≥1% (increasing benefit for 5% and 10%)	-
Bladder Cancer	Companion Threshold: IC ≥5% (IC2/3)	Complementary Threshold(s): TC ≥25% (membranous), or ICP >1% and IC ≥25%, or ICP =1% and IC = 100%	Companion Threshold: CPS ≥10	Complementary Threshold: TC ≥1%	Threshold: TC ≥5%
Melanoma	Threshold: ≥1%		-	Threshold: ≥1%	
Head and neck squamous cell carcinoma (HNSCC)	-		Companion Threshold: CPS ≥1	Complementary Threshold: TC ≥1%	-
Kidney Cancer	-		-	Threshold: TC ≥1%	-
Merkel Cell Carcinoma (MCC)	-			-	Threshold: TC ≥1%
Gastric and Gastroesophageal Junction (GE/GEJ)			Companion Threshold: CPS ≥1	-	-
Esophageal (SCC)	-	-	Companion Threshold: CPS ≥10	-	-
Cervical Cancer	-		Companion Threshold: CPS ≥1	-	
Hepatocellular Cancer (HCC)				Threshold: TC ≥1%	
Breast (TNBC)	Companion IC ≥1% (IC1/2/3)		-		
Vulvar Cancer (SCC)	-		NCCN-recommended CPS ≥1		-

		No of pat	ients				
:	Study	Intervention	Control	Overall survival hazard ratio (95% CI)	Weight (%)	Overall survival hazard ratio (95% CI)	
	PD-LI positive					/	
	CheckMate 01	7 63	56		7.82	0.75 (0.50 to 1.10)	
	CheckMate 02	5 94	87		7.75	0.79 (0.53 to 1.17)	
	CheckMate 05	7 123	123	<	15.02	0.62 (0.47 to 0.83)	
	CheckMate 14	1 88	61		6.96	0.55 (0.36 to 0.83)	
	KEYNOTE-006	446	225		21.99	0.63 (0.50 to 0.80)	
	KEYNOTE-045	NR	NR	←	10.11	0.61 (0.43 to 0.86)	
	OAK	241	222		21.79	0.74 (0.58 to 0.93)	
	POPLAR	93	102		8.55	0.59 (0.40 to 0.85)	
Ì	Overall: P=0.81	, l ² =0%		-	100.00	0.66 (0.59 to 0.74)	
i	PD-L1 negative						
	CheckMate 01	7 54	52		7.99	0.57 (0.38 to 0.86)	
	CheckMate 02	5 276	299		23.09	0.77 (0.60 to 0.97)	
	CheckMate 05	7 108	101		14.83	0.91 (0.67 to 1.22)	
	CheckMate 14	1 73	38		5.46	0.89 (0.54 to 1.45)	
	KEYNOTE-006	103	47		6.29	0.75 (0.47 to 1.19)	
	KEYNOTE-045	NR	NR		14.91	0.89 (0.66 to 1.20)	
	OAK	180	199		22.48	0.75 (0.59 to 0.96)	
	POPLAR	51	41		→ 4.95	1.04 (0.62 to 1.75)	
(Overall: P=0.61	, l ² =0%		-	100.00	0.80 (0.71 to 0.90)	
			0.	5 1	1.5		

What is MSI-H/dMMR? •

- MSI-H = microsatellite instability
- dMMR = deficient mismatch repair
- Causes of dMMR/MSI-H:
 - Mutation in DNA repair proteins
 - Can occur in Lynch syndrome -
 - Inactivation of DNA repair proteins

Why does this matter?

- Impairment in mismatch repair causes
 - Greatly increased number of mutations in tumors
 - Some mutations (neo-antigens) may be targeted by immune system
 - Pembrolizumab can facilitate immune system attack in some MSI-H/dMMR cancers

Data resulting in the FDA Approval

Tumor Type	No. of Tumors	Patients with a Response	Range of Response Duration
		no. (%)	то
Colorectal cancer	90	32 (36)	1.6+ to 22.7+
Endometrial cancer	14	5 (36)	4.2+ to 17.3+
Biliary cancer	11	3 (27)	11.6+ to 19.6+
Gastric or gastroesophageal junction	9	5 (56)	5.8+ to 22.1+
Pancreatic cancer	6	5 (83)	2.6+ to 9.2+
Small-intestine cancer	8	3 (38)	1.9+ to 9.1+
Breast cancer	2	2 (100)	7.6 to 15.9
Prostate cancer	2	1 (50)	9.8+
Other cancers	7	3 (43)	7.5+ to 18.2+

tumor types: bladder, esophageal, sarcoma, thyroid, retroperioneal, small-cell lung cancer, and renal cell cancer (includes two patients who could not be evaluated and were considered not to have had a response). A + sign indicates that the response was ongoing at the time of data cutoff.

Lemery, NEJM, 2017

Bridging this gap – immunoprofiling for therapy prediction

Multiplex IHC – getting more from less

- Assessment of multiple parameters simultaneously on a single slide significantly decreases tissue requirement
- Simultaneous analysis of multiple immune cells (and their functional states) allows for a deeper understanding of the TME
 - Proximity between individual cells (i.e. spatial relationships)

Adapted from Tsujikawa et al. 2017. Cell Reports
Biomarker panel – hot vs cold tumors

Landscape/functional multiplex IHC panel: 6-plex + Tumor marker + DAPI

Marker	Present on	TiME function	Hot tumors
CD3	Pan T lymphocytes (effector, helper, cytotoxic, memory, regulatory, NK-T, γδ)	Cell-mediated immunity	 High degree of T cell and cytotoxic T cell infiltration Checkpoint activation (PD-1, PD-L1)
CD8	CD3 ⁺ CD8 ⁺ (Cytotoxic T cells) CD3 ⁺ CD8 ⁻ (Helper T cells)	Cytotoxic - Tumor killing Helper – regulate immune response	Cold tumors • Absence of T cells within the tumor core and at the tumor margins Altered tumores
CD163	M2 Macrophages (TAMs)	Direct and indirect suppression of T cell function and recruitment Hypoxia / fibrosis	 Poor T cell and cytotoxic T cell infiltration (or bordered at tumor margin)
FoxP3	Regulatory T cells	Maintain immune homeostasis Suppress anti-tumor immunity	 Presence of immune suppressive cells (M2 macrophages, regulatory T cells)
PD-1	 Activated/exhausted T cells B cells APCs NK cells 	Inhibits T cell proliferation, survival, and effector function Decreases expression of survival molecules	 Active T cell checkpoints (PD-1, PD-L1) 28 open clinical trials targeting TAMs in combination with anti-PD-1/PD-L1 therapy - as of 04/24/19
PD-L1	T cells B cells DCs APCs MDSCs Tumor cells	Same as PD-1	

Response of CDK12 Mutant Patients to Anti-PD1 Checkpoint Inhibitor IO-therapy

Metastatic lymph node biopsy shows robust CD3 staining presence of T lymphocytes Marked decline in pelvic lymph node disease burden following anti-PD1 treatment Suggests mCRPC patients who harbor biallelic CDK12 loss may Prior to anti-PD-1 immunotherapy Right external iliac LN, 2.4 cm, PSA 8.9 ng/mL After 4 doses of anti-PD-1 immunotherapy Right external iliac LN, 1.1 cm, PSA 0.9 ng/mL have a higher likelihood of response to IOtherapy

Precision Oncology Symposium

Molecular Tumor Board

Precision Oncology Symposium

Comprehensive Molecular Profiling: Clinical Utility

CAS	E							
EGFR (Oncogenic EGFR, a rec known to b	t with Met 7975 Gain-of-function eptor tyrosine kinase e oncogenic.	asta O	tic NSCLC with the second seco	th Ex	xon 19 de	el. EGFR C79	7S	
		Implica	tions for Targeted Therapeutics	5				
GINER GINER	CANCER GENOME *	Respon	se to osimertinib		Confers decreased	sensitivity ^a		
		Respon	se to anti-EGFR antibodies		Currently no role fo	r EGFR mutation in predicting res	ponse in NSCLC	
964	An EGFR resista	nce mu	Non-small Cell Lung Ca	Osimer	tinib	+ civic		
1396	Case report of a	patient	Lung Adenocarcinoma	Osimer	tinib		IONS OF	
4837	Currently, there a	ire no e	Non-small Cell Lung Ca	Brigatir	nib, Panitumuma	VARIANTS IN CANCER		
29 © 2018	The Permanente №	fedical G	roup					PERMANENTE MEDICINE® The Permanente Medical Group

							000				
.ast Modifie	ed by 👔 LynzeyK	Last Reviewed by 😰 kkrysi	Last Commented On by 👷 kkrysiak								
Aliases: CY	S797SER and RS1	057519861	Allele Registry ID: CA16602785	Repre	esentative	Variant Co	oordinates				
ſhis Variar	nt does not current	ly have a Summary.		Ref. B	Build: GRC	h37 Ense	mbl Versio	n: 75			
/ariant Typ Missense \	pe: Variant			Chr. 7	Start 55249	091	Stop 55249091	Ref T	.s Var A	r. Bases	
HGVS Expr NST000002 NC_000007.1	ressions: 275493.2:c.2389T>A , 13:g.55249091T>A , .4:c.2389T>A , and			Trans	script T0000027	5493.2					
VP_005219.2	2:p.Cys797Ser			ClinV:	ar ID	ClinVa	r Clinical Si	ignificance			Linfo
ClinVar ID: 376342				COSN	AIC ID (v68) dbS	NP RSID	HGVS	ID		y Variant
CIVIC Varia	ant Evidence Score	:		0.5						45	ā
17.5				misse	ense varia	nt N	inpEff Impa IODERATE	ct gn 	iomAD Adj.	. Аг	
17.5				misse	nse varia	nt N Vie	inpEff Impa IODERATE ew MyVarian	ict gn It.info Detail	iomAD Adj. Is	. Аг	
17.5 Evidence	e for C797S 3 to	stal items		misse	ense varia	S nt N Vie .≛ (i npEff Impa IODERATE ew MyVarian Get Data	ict gn it.info Detail	iomAD Adj. Is	Help	
I7.5 Evidence EID	e for C797S 3 to DIS	ıtal items	DRUGS	DESC	EL A	S nt M Vie ET	inpEff Impa MODERATE ew MyVarian Get Data ED	ct gn it.info Detail	ls VO	Help	
I7.5 Evidence EID	e for C797S 3 to DIS	tal items	DRUGS	DESC	EL A	S NU Vie ET	inpEff Impa MODERATE ew MyVarian Get Data ED	ict gri it.info Detail	vo	Help	· [=
Evidence	e for C797S 3 to DIS	tal items Cell Carcinoma	DRUGS Osimertinib	DESC	EL A	Sont N Vie ET C	inpEff Impa IODERATE ew MyVarian Get Data ED S	it.info Detail	vo	Help ER • 3 J	· =
Evidence EID 964 1396	e for C797S 3 to DIS Lung Non-small Lung Adenocarc	tal items Cell Carcinoma inoma	DRUGS Osimertinib Osimertinib	DESC	EL A	S N N	inpEff Impa IODERATE ew MyVarian Get Data ED IS IS	ict gr 	von AD Adj	• Help ER • 3 1	· =
Evidence EID 964 1396 4837	e for C797S 3 to DIS Lung Non-small Lung Adenocard Lung Non-small	tal items Cell Carcinoma inoma Cell Carcinoma	DRUGS Osimertinib Osimertinib Brigatinib, Panitumumab, Cetuximab (Co	DESC	EL A B C D	S NT N	inpEff Impa IODERATE ew MyVarian Get Data ED C C C C C	tt.info Detail	VO VO VO	+ Help ER + 3 + 1 +	• =
Evidence EID 964 1396 4837	e for C797S 3 to DIS Lung Non-small Lung Adenocar Lung Non-small	Cell Carcinoma inoma Cell Carcinoma Cell Carcinoma	DRUGS Osimertinib Osimertinib Brigatinib, Panitumumab, Cetuximab (Co	DESC	EL A B C D	S N N Vie	inpEff Impa INDERATE ew MyVarian Get Data ED C C C C C C C C C C C C C C C C C C	tt. info Detail	vonAD Adj	Help ER - 3 + 1 + 4 +	· =
Evidence EID 964 1396 4837	e for C797S 3 to DIS Lung Non-small Lung Adenocar Lung Non-small EVIDEN d by MarroLanget	Cell Carcinoma inoma Cell Carcinoma CEE EID4837 g) Last Modified by ? k	DRUGS Osimertinib Osimertinib Brigatinib, Panitumumab, Cetuximab (Co ktyyatak Last Beviewed by graduators) L	DESC	EL A B C D ted On by	S nt M Vii ET C C C C C C C C C C C C C C C C C C	inpEff Impa MODERATE ew MyVarian Get Data ED C C C C C C C C C	tt. info Detail	vonAD Adj	Help ER • 3 1 1 1 4 1 e Talk	- = + + +
Evidence EID 964 1396 4837	e for C797S 3 to DIS Lung Non-small Lung Adencarc Lung Non-small EVIDEN d by MartoLange	Cell Carcinoma Inoma Cell Carcinoma CEE EID4837 (1) Last Modified by ? k	DRUGS DRUGS Osimertinib Osimertinib Brigatinib, Panitumumab, Cetuximab (Co kkrystak Last Reviewed by @ prpaddaros L CULTICA: This Evidence here has not been accepted as	DESC	EL A B C D ted On by	S N N Via	inpEff Impa toDERATE ew MyVarian Get Data ED ED IC IC IC IC	ct gn 	vo vo vo tr tr tr tr tr tr tr tr tr tr tr tr tr	Help ER + 3 3 1 4 4	۰ = ۲ ۲

EVROLIMUS. PALBOCICLIB AFENTROR/AFITTOR DISPERZ has immunosuppressive properties and may predispose patients to bacterial, fingal, ArENTROR/AFITTOR DISPERZ has immunosuppressive properties and may predispose patients to bacterial, fingal, and systemic infections, including pneurosia, mycobacterial infections, other bacterial infections, invasive fungal ene rendra is Study 1 (2012063-1) take a **pidatery of 10⁴**, and Study 1 (2012064-1) take an induced of 10% A Canke 2 decrease in a sectorylation was reported in this Volt pattern moving BEAVET pile extrant a Study 1 in Study 1 and 1, the makeminist and an opping and the makeministration of Study 2 surtupersis are 1 days (see Adverse on properties reported and women (RP4 V/X also for fants couples Non-service and and services and a service of the fair 1 o Weik entropeakse benepotel in 1900 potent esposel to ERENCE access basis 1 and 1 One deals into a contopeak repoir we interval in black 1 Provinces should adom potent to promptive pot any epoches of how four Potent () Intential In 10 hours ieres; lab desensing ar that intential lang danase (LL) and ar parametries are court in galaxes tented with system based biologuesters times 44 (CDK44) subbitors, including ERAVES where takes in combination with end know dead train (NLOBA), NLOBA 2, NLOBA 3, 10% of ERANGS entert patents and Editorements of any mark 10% had Grade 3 or 4 and as that cases were equated Additional cases of ED presentation have been observed in the pretanalesian setting, with infections (e.g., aspergillosis, candidanis, as 202) and viral infections (e.g., statistical of hepathis B virus) have occurred. Some of these infections in two been revere (e.g., aspects, septer, sheek, or resulting in mathingseen agen failure or fails. The incidence (Gales, 3 and 4 effections was up to 10% on the two 5% respectively. The machines of serious infections was reported at a higher frequency in gatients < 6 years of age (saw Dor 10% of Specific Population (8.4)). italities reported lan Adorea An Under prints for pulsenary symptons indicates of ILD presentation (e.g. beyond, cough, despace). In prints who have new serve for nature IRLINE in putterts with server LD-or presentation (no Dranse and Administration (P.N. which have developed eccentration internal DRAVES interdately and exclusive for extent Pre-5 WARNINGS AND PRECAUTIONS 5.1 Non-infectious Pneumonitis Non-infectious pneumonitis is a class effect of rapamycin derivatives. Non-infectious pneumonitis was reported in up to 19% of patients treated with AFINITOR/AFINITOR DISPERZ in clinical trials, some cases were reported with pulmonary hypertension (including pulmonary arterial hypertension) as a secondary event. The incidence of Grade 3 and 4 non-infectious pneumonitis was up to 4% and up to 0.2%, respectively [see Adverse Reactions (6.1)]. Fatal outcomes have been observed. Consider a diagnosis of non-infectious pneumonitis in patients presenting with non-specific respiratory signs and symptoms. Consider opportunistic infections such as pneumocystis jiroveci pneumonia (PIP) in the differential diagnosis Advise patients to report promptly any new or worsening respiratory symptoms. 35 © 2018 The Permanente Medical Group PERMANENTE MEDICINE.

teration(s): er: trastuzumab, lapatinib, ado-trastuzumab entansine, pertuzumab, neratinib erations in the following genes: 1, EGFR, ER882, ER883, ER884, E2H2, FGFR2, FGFR3, GNA11, GNA0, HRA5, IDH1, IDH2, JAK1, JAK2, JAK TFOR, MT088, NRA5, NTRAL, POGFAA, PIGCA, POLE, RAF1, RET, RIT1, ROS1, SF381, SM0, SPOP, TERT	Positive Test Results The patient tested positive for the following genomic alteration(s): EBBB2 amplification Estimated copy number: 6, confidence interval: 5.7 - 7.1 Associated FDA-approved targeted therapies in breast cancer: trastuzumab, Inpatinib, ado-trastuzumab entransine, pertuzumab, neratinib ESRI p. 737.5 NM, 001122740.1:c.1610A-C Estimated variant allele frequency: 47% FGR3 amplification Estimated copy number: 7, confidence interval: 5.3 - 8.7 Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: ATI, AK, AR, ARAF, BRAF, CDKA, CTINB1, EGFR, ERBB2, ERBB3, ERBB4, E2H2, FGFR2, FGFR3, GNA11, GNA0, HRAS, IDH1, IDH2, JAK1, JAK2, JAK KT, FKRAS, MAP2K1, MAP2K2, MAP2K3, MAP2K7, MARCI, MET, MTOR, MYDB8, NRAS, NTRAI, POGFRA, PKGCA, POLE, PAF1, RET, RTI, ROSI, SF3B1, SMO, SPOP, TERT Hotspot mutation: ALK, AR, BRAF, COND, COK, COK, EGFR, ESRI, FGRR2, FGFR3, FGR3, GRA11, GNA0, MET, MYC, MYON, POGFRA, PKISCA Deeg gene deletion: ATM, BRCA1, BRCA2, CDKV2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALK, AR, ARA, FGRF, ERBB2, ERBB4, ERG, FGR2, FGFR3, FGR3, FGR4, FMC, MYON, POGFRA, PKISCA Deeg gene deletion: ATM, BRCA1, BRCA2, CDKV2A, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALK, AR, ARA, EGFR, ERBB2, ERBB4, ERG, FSR1, FCFR2, FGFR3, FGR3, FGR3, FGR3, FGR4, FKGCA Deeg gene deletion: ATM, BRCA1, BRCA2, CDKV2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALK, AR, ARA, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR3, FGR3, FGR3, FGR4, FKGCA Deeg testion: ATM, BRCA1, BRCA2, DKKE EGFR, ESR1, FGFR1, FGFR2, FGFR3, FGFR3, FGFR3, FGR3, FGR3, FGR3, FGR3, FGR2, RF3, AGC2, RF3, AGC2, RF3, AGC2, RF3, AGC2, RF4, AGC3, AGC4, AGC4, PFR4, AGC3, PFR4, AGC3, PFM4, AGC3, PFM4, AGC3, RF3, AGC2, RF3, AGC2, RF3, AGC2, RF3, AGC2, RF4, AGC3, AGC4, AGC4, PFR4, AGC3, PFR4, AGC3, PFM4, AGC3, PFM4, AGC3, PFM4, AGC3, RF4, RF5, RF3, AGC3, RF502, RF503 TF4	Positive Test Results The patient tested positive for the following genomic alteration(s):	
teration(s): er: trastuzumab, lapatinib, ado-trastuzumab emitansine, pertuzumab, neratinib erations in the following genes: 1, EGFR, ER882, ER883, ER884, E2H2, FGFR2, FGFR3, GNA11, GNA0, HRA5, IDH1, IDH2, JAK1, JAK2, JAK tTOR, MTOB8, NRA5, NTRAL, POGFA, PIGCA, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT TORA, ORDBR, NRA5, NTRAL, POGFA, PIRCA, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	The patient tested positive for the following genomic alteration(s): • ER882 amplification Estimated copy number: 6, confidence interval: 5.7 - 7.1 Associated FDA-approved targeted therapies in breast cancer: trastuzumab, lapatinib, ado-trastuzumab entansine, pertuzumab, neratinib • ESR1, p. 7375 NM_001122740.1:c.1610A>C Estimated variant allee frequency: 47% • FGR3 amplification Estimated variant allee frequency: 47% • FGR3 amplification Estimated variant allee frequency: 5.3 - 8.7 Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: ATI, AKI, AR, ARAF, BRAF, CDKA, CTINB1, EGFR, ER882, ER883, ER884, EPA2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAKI, JAK2, JAK KIT, KRAS, MAP2KI, MAP2KZ, MAP2K, MAPKT, MARKI, MET, MTOR, MOB8, NIRAS, NITRAI, POGFRA, PIK3CA, POLE, PAF1, RET, RITI, ROSI, SF381, SMO, SPOP, TERT Hotspot mutation: ATM, AR, BRAF, CONE, OCK, EGFR, ER81, FGRI2, FGFR2, FGFR3, FGR3, GRA11, GNAQ, MET, MYC, MYON, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene amplification: ALK, AR, RAR, EGR, EGBB2, EBB3, ER6, FGR2, FGFR3, FGR3, FGR4, MYC, MYON, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATX, ARCA1, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATX, ARCA1, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATX, ARCA1, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATX, ARCA1, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATX, ARCA1, BRCA1, BRCA2, CDIXI2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATX, ARCA1, BRCA1, BRCA2, EGRE, EBBB2, ER6B, ERG, ESA1, ETV1, ETV4, ETV5, FGFR2, FGFR3, FGR3, FGR, FIT3, JAC2, KRA5, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRC1, NTRK2, NTRK3, NUTM1, POGFRA, PIK3CA, PRAGC, PRKACA, PRKACB, PFEN, RAD51B, RAF1, RELA, RET, RO51, RSP02, RSP03, REF	The patient tested positive for the following genomic alteration(s):	
er: trastuzumab, lapatinib, ado-trastuzumab emtansine, pertuzumab, neratinib erations in the following genes: 1, EGFR, ERBB3, ERBB4, E2H2, FGFR2, FGFR3, GNA11, GNA0, HRA5, IDH1, IDH2, JACI, JACZ, JACZ HTOR, MTOB8, NRA5, NTRU, POGFRA, PRIGCA, POLE, RAF1, RET, NT1, ROS1, SF3B1, SMO, SPOP, TERT			
er: trastuzumab, lapotinib, ado-trastuzumab erntansine, pertuzumab, neratinib erations in the following genes: 1, EGFR, ER882, ER883, ER884, EZH2, FGFR2, FGFR3, GNA11, GNA0, HRA5, IDH1, IDH2, JAK1, JAK2, JAK TOR, MD88, NRAS, NTRAL, POGFAA, PIG2A, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	Associated Copy Ionitions 1, Combacting in breast Cancer: trastuzumab, lapatinib, ado-trastuzumab entansine, pertuzumab, neratinib Associated Tobaptroved trajected therapies in breast cancer: trastuzumab, lapatinib, ado-trastuzumab entansine, pertuzumab, neratinib + ESRL pr3375 NM_001122740.11::1610A>C Estimated variant allee frequency: 47% + FGR3 amplification Estimated copy number: 7, confidence interval: 5.3 - 8.7 Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AKTI, ALX, AR, ARAF, BRAF, CDKA, CTNNB1, EGFR, ERBB2, ERB3, ERB84, E2H2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JACL, JAK2, JAK KTI, FRAS, MAP2CI, MAP2CZ, MAP2KA, MAP2KI, MAT, MTOR, MTOB8, MNAS, NTRAL, POGFR4, PIGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JACL, JAK2, JAK KTI, FKAS, MAP2CI, MAP2CZ, MAP2KA, MAP2KI, MAT, MTOR, MTOB8, MNAS, NTRAL, POGFR4, PIGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK Rotspot mutation or deleterious mutation: ATM, BRCA1, BRCA2, BRCA2, CON2A, MSH2, MSH6, PTEN, RB1, TF53 Gene amplification: ALX, AR, BRAF, COND, CDKA, CDKA, CSR4, ESR1, FGFR1, FGFR2, FGFR3, FGFR3, FGR3, MAC, MCN, PDGFRA, PIGCA Deep gene deletion: ATM, BRCA1, BRCA2, CDKA2, CMSH2, MSH6, PTEN, RB1, TF53 Gene angulification: ALX, AR, ANL, BRAF, COND, CDKA, CSR6, ESR1, FGFR1, FGFR2, FGFR3, FGFR2, FGFR3, FGR, FL3, JAK2, KRA5, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFRA, PIGSCA, PARAG, PRKACA, PKACB, PFEN, RADS1B, RAF1, RELR, RET, ROS1, RSP02, RSP03 TERT	ERBB2 amplification Estimated convinues 6 confidence interval: 5.7 - 7.1	
Erations in the following genes: 1, EGFR, ER882, ER883, ER884, E2H2, FGFR2, FGFR3, GNA11, GNAQ, HRA5, IDH1, IDH2, JAK1, JAK2, JAK TOR, MYD88, NNRAS, NTRAL, POGFAA, PIG2G, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	• ESRI p.19375 NM_001122740.1:c1610A>C Estimated variant allele frequency: 47% • FGFR3 amplification Estimated variant ested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AKTI, ALX, AR, APAF, BRAF, CDKA, CTNNB1, EGFR, ERBB2, ERBB3, ERBB4, EZH2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAKI, JAK2, JAK KTI, FKAS, MAP2XI, MAP2XZ, MAP2XX, MAP2XX, MAPXX, MAPX, MRT, MTOR, MTOB8, MN28, NTRAL, POGFR4, PIC3CA, POLE, RAF1, RET, NT1, ROS1, SFB81, SMO, SPOP, TERT Hotspot mutation: ALX, AR, BRAF, COND, CDK, EGFR, ERBL, GFR1, GFR1, GFR1, KTI, KRAS, MON2, MET, MYO, MOGFRA, PIC3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKH2A, MSH6, PTEN, RB1, TP53 Gene amplification: ALX, AR, ARA, BRAF, COND, CDKA, CSKE, GFF, ERBL, GFR1, GFR1, GFR1, KTI, KRAS, MON2, MET, MYO, MODFRA, PIC3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKH2A, MSH6, PTEN, RB1, TP53 Gene amplification: ALX, AR, AXL, BRAF, COND, CMA, CSKE, GFF, ERBL, GFR1, GFR1, GFR1, GFR1, GFR2, FGFR3, GFR1, FMY, MYO, MOD, PGFRA, PIC3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKH2A, MSH6, PTEN, RB1, TP53 Gene amplification: ALX, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR2, FGFR3, FGR4, FGFR4, FGFR3, FGR2, FGFR3, FGR4, FGFR4, FGFR3, FGR2, FGFR3, FGR4, FGFR3, FGR2, FGFR3, FGR3, FGFR3, FGR4, FGFR3, F	Associated FDA-approved targeted therapies in breast cancer: trastuzumab, lapatinib, ado-trastuzumab emta	insine, pertuzumab, neratinib
erations in the following genes: 1, EGFR, ER882, ER883, ER884, E2H2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK TOR, MYD88, NNRAS, NTRVI, POGFRA, PIC3CA, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	NM_001122740.1:c1610A-C Estimated variant allele frequency: 47% • FGR3 amplification Estimated copy number: 7, confidence interval: 5.3 - 8.7 Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AXT1, AXX, AR, ARAF, BRAF, CDK4, CTINB1, EGFR, ERB82, ERB83, ERB84, E2H2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK KTT, KRAS, MAP2AZ, MAP2K3, MAP2K3, MAP2K7, MARAL, MET, MTOR, MYD88, NRAS, NTRAL, POGFRA, PIK3CA, POLE, RA1, RET, NT1, ROS1, SF381, SMO, SPOP, TERT Hotspot mutation: ALX, AR, BRAF, COND, CDK4, CDK6, EGFR, ESR1, FGR1, FGFR2, FGFR3, FGR4, GFIR, KTT, KRAS, MON2, MET, MYC, MYON, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDK92A, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, ANL, BRAF, COND, CDK4, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, ANL, BRAF, COND, CDK4, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, ANL, BRAF, COND, CDK4, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, ANL, BRAF, COND, CDK4, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, ANL, BRAF, COND, CMK4, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, ANL, BRAF, COND, CMK4, BR6, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR3, FGR, H3, JAK2, KRA5, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NGC1, NTRK1, NTRK2, NTRK3, NUTM1, POGFRA, PIK3CA, PRAGC, PRKACA, PRKACB, PTEN, RADS1B, RAF1, RELA, RET, ROS1, RSP02, RSP03 TERT	• ESR1 p.Y5375	
Reations in the following genes: 1, EGFR, ER882, ER883, ER884, E2H2, FGFR2, FGFR3, GNA11, GNAQ, HRA5, IDH1, IDH2, JAK1, JAK2, JAK TOR, MYD88, NRA5, NTRVI, POGFA, PIC3CA, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	Estimated variant allee Prequency: 4 7% FGR3 amplification Estimated copy number: 7, confidence interval: 5.3 - 8.7 Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AtTL, AKL AR, ARAF, BRAF, CDKA, CTINIBI, ECFR, ERBB2, ERBB3, ERBB4, E2H2, FGFR2, FGFR3, GNA11, GNAO, HRAS, IDH1, IDH2, JAK1, JAK2, JAK KIT, KRAS, MAP2KI, MAP2K2, MAP2K4, MAP2K7, MAPKI, MET, MTOR, MOB8, NIRAS, NITRLI, POGFRA, PIK3CA, POLE, RAF1, RET, RITI, ROSI, SF3B1, SMO, SPOP, TERT Hotspot mutation: AtLL, AKL, BRAF, CONE, OCK, COK, ESFR, ESRI, FGFR2, FGFR3, FGFR3, FGFR3, FGFR4, FMC, MYON, PDGFRA, PIK3CA Gene amplification: ALK, AR, BRAF, COND, ICMA, COKE, EGFR, ESRI, FGFR2, FGFR4, IGFR1, FGFR2, FGFR3, FGR4, MYON, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDIVI2A, MSH2, MSH6, PTEN, RB1, TPS3 Gene fusion: ATZ, AKL, AR, AXL, BRAF, EGFR, EBB82, EBB84, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR4, IGT2, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFRA, PIK3CA, PRAGC, PRKACA, PRKACB, PTEN, RADS1B, RAF1, RELA, RET, ROS1, RSP02, RSP03, TERT	NM_001122740.1:c.1610A>C	
erations in the following genes: 11. EGFR, ER882, ER883, ER884, EZH2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK 1709, MT088, NRSA, NTRAL, POGFA, PIC3CA, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SP0P, TERT	Estimated copy number: 7, confidence interval: 5.3 - 8.7 Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AtTI, ALK, AR, ARAF, BRAF, CDKA, CTINBI, EGFE, ERBI2, ERBI3, ERBI4, EZH2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK KIT, KRAS, MAP2KI, MAP2K2, MAP2K4, MAP2K7, MAPK1, MET, MTOR, MYDB8, NRAS, NTRK1, PDGFRA, PK3CA, POLE, RAF1, RET, RITI, ROS1, SF3B1, SMO, SPOP, TERT Hotspot mutation: ALK, AR, RBAF, COND, CDKA, CDK9, A, MYDB8, NRAS, NTRK1, PDGFRA, PK3CA, POLE, RAF1, RET, RITI, ROS1, SF3B1, SMO, SPOP, TERT Hotspot mutation: ALK, AR, BRAF, COND, CDK4, CGK8, EGFR, ESR1, EGFR4, FGFR4, FGFR4, IGF1R, KIT, KRAS, MDM2, MET, MYC, MYON, PDGFRA, PKI3CA Deep gene deletion: ATM, BRC11, BRC12, CDK12A, MS42, MS42, MS4B, TEN, RIS1, TS3 Gene fusion: ATZ, ALK, AR, AAL, BBAF, EGFR, EBB32, EBB34, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR4, TGFR3, KGR, RTI3, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTTKC1, NTTKC1, NTTK1, NUTM1, PDGFRA, PKI3CA, PRACG, PKKACA, PKKACB, PTEN, RAD51B, RAF1, REL, RET, RO51, RSP02, RSP03, RSP03, TERT	Estimated variant allele frequency: 4/%	
xrations in the following genes: 11, EGFR, ER882, ER883, ER884, EZH2, FGFR2, FGFR3, GNA11, GNAQ, HRA5, IDH1, IDH2, JAK1, JAK2, JAK 1707, M7088, NRSA, NTRAL, POGFA, PIG2A, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AKTI, AKX, AR, ARAF, BRAF, COKA, CTINBL, EGFR, ERBB2, ERBB3, ERBB4, ED2H, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK KIT, KIAS, MAP2K2, MAP2K4, MAP2K7, MAPK1, MET, MTOR, MYDB8, NIRSK, INDGR, NTRK3, PDGFR4, PIK3CA, POLE, RAF1, RET, RITI, ROS1, SF3B1, SMO, SPOP, TERT Hotspot mutation: atLk, AR, BRAF, COXD1, COKA, CISNE, EGR1, FGFR1, FGFR2, FGFR4, IGFL7, KIT, KIASS, MD2, MET, MTO, MYDB8, NIRSK, INDER, NIRSK, NIRSK, INDER, NIRSK, POLE, RAF1, RET, RITI, ROS1, SF3B1, SMO, SPOP, TERT Hotspot mutation: ALK, AR, BRAF, COXD1, COKA, COKA, CESH, EGR1, FGFR1, FGFR2, FGFR4, IGFL7, KIT, KIASS, MD02, MET, MYC, MYON, PDGFR4, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, COKIZA, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALK, AR, AXL, BRAF, EGFR, ERB2, ERBB4, ERG, ESR1, FCY1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTIK1, NTRK2, NTIK3, NUTM1, PDGFR4, PIK3CA, PRAGC, PRKACA, PRKACB, PTEN, RADS1B, RAF1, RELA, RET, ROS1, RSP02, RSP03 TERT	FGR3 amplincation Estimated copy number: 7. confidence interval: 5.3 - 8.7	
RTATIONS IN the following genes: 11, EGFR, ER882, ER883, ER884, EZH2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK HTOR, MTD88, NRAS, NTRAL, POGFAA, PIG2A, POLE, RAF1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT	Negative Test Results The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AKTI, ALX, AR, APAF, BRAF, CDKA, CTNNBI, EGFR, ERBB2, ERBB3, ERBB4, EZH2, FGFR2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAKI, JAK2, JAK, KTI, RAS, MAPZKI, MAPZK2, MAPZK3, MAPZK1, MART, MTOR, MTOB8, NIXAS, NITRAL, POGFR4, PRISCA, POLE, RAF1, RET, NITI, ROSI, SF3B1, SMO, SPOP, TERT Hotspot mutation of deleterious mutation: ATM, BPCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53 Gene amplification: ALX, AR, BRAF, COXD1, CDKA, CDK6, EGFR, ESRI, L GFR1, FGFR4, IGFR4, IGF18, KTI, KRAS, MDM2, MET, MYC, MYON, PDGFR4, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALX, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, IT3, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRC1, NTRK1, NTRK2, NTRK3, NUTM1, POGFR4, PIK3CA, PRAGC, PRKACA, PRKACB, PTEN, RADS1B, RAF1, RELA, RET, ROS1, RSP02, RSP03 TERT		
terations in the following genes: 11, EGFR, EB882, ER883, ERB84, E2H2, FGFR2, FGFR3, GNA11, GNA0, HRA5, IDH1, IDH2, JAK1, JAK2, JAK MTOR, MTOB8, NIRAS, NIRK1, PDGFRA, PIK3CA, POLE, RAF1, RET, RIT1, ROS1, SF3B1, SMO, SPOP, TERT INGA, CORDAN, MINI, MEM, GTAN, DB1, TTE3	The patient tested negative for all targeted genomic alterations in the following genes: Hotspot mutation: AKT, AKK, AR, ARAF, BRAF, CDK4, CTNNBL, EGFR, ERBB2, ERBB3, ERBB4, E2H2, FGFR2, FGFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK KIT, KRAS, MAP2K1, MAP2K2, MAP2K4, MAP2K7, MAPK1, MET, MTOR, MYDB8, NRAS, NTRK1, PDGFRA, PIK3CA, POLE, RAF1, RET, RITI, ROS1, SF3B1, SMO, SPOP, TERT Hotspot mutation: AKI, BRAF, CONDI, CDK4, CDK6, EGFR, ESR1, FGFR1, FGFR2, FGFR4, IGF1R, KIT, KRAS, MDM2, MET, MYO, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDK12A, MSH2, MSH6, PTEN, RB1, TPS3 Gene fusion: ATZ, ALK, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, FUTN, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FL3, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH1, NOTCH1, NOTCH1, NOTCH1, REX1, NTRK2, NTRK3, NTRK1, NTRK4, NTRK3, NTRK1, NTRK1, NTRK3, NTK1, NTK3, NTK1, NTK3, NTK4, N	Negative Test Results	
11, EGFR, ERBB2, ERBB3, ERBB4, EZH2, FGFR2, FGFR2, FGFR3, GMA11, GMAQ, HRA5, IOH1, IDH2, JAK1, JAK2, JAK ATOR, MYD88, NRA5, NTRK1, PDGFRA, RIKSCA, POLE, ARE1, RET, RIT1, ROS1, SF381, SMO, SPOP, TERT INCC2, CROBAR, MELCA MELCA, MELCA MELCA TERT	Hotsport mutation: Art., ALK, AR, ARAF, BRAF, CDK4, CTNNBL, EGFR, EBBB2, EBBB3, EBBB4, ED24, FGFR2, FGFR3, CAUL, GNAL), GNAL), HAZ, JAVAC, JAV KIT, KRAS, MAP2KL, MAP2KZ, MAP2KA, MAP2KA, MAPZKA, MAPCKA, CMTOR, MYDB8, NRAS, NTRKL, POGFRA, PIK3CA, POLE, RAFL, RET, RITL, ROSL, SF3B1, SMO, SPOP, TERT Hotsport mutation: article simulation: ATM, BRCAL, BRCAZ, CDN02A, MY32, MY46, FTEN, RB1, TF53 Gene amplification: ALK, AR, BRAF, CONDI, CDK4, CDK6, EGFR, ESR1, FGFR1, FGFR2, FGFR4, IGF1R, KIT, KRAS, MDM2, MET, MYC, MYCN, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MS42, MSH6, PTEN, RB1, TF53 Gene fusion: ATZ, ALK, AR, AXL, BRAF, EGFR, EBB2, ERBB4, ERG, ESR1, FUY1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FL3, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFRA, PIK3CA, PRAGC, PRKACA, PRKACB, PTEN, RB51, RB1, RB1, RB1, RB1, RB1, RB1, RB1, RB	The patient tested negative for all targeted genomic alterations in the following genes:	
IDCAD COVADA MEND MENE OTEN DRI TREZ	Hotspot mutation or deleterious mutation: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53 Gene amplification: ALK, AR, BRAF, CONDI, CDKA, CDK6, EGFR, ESR1, FGFR1, FGFR2, FGFR4, IGF1R, KIT, KRAS, MDM2, MET, MYC, MYON, PDGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: AKT2, ALK, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRA5, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PIKACA, PIKACB, PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSP02, RSP03 TERT	Hotspot mutation: AKT1, ALK, AR, ARAF, BRAF, CDK4, CTNNB1, EGFR, ERBB2, ERBB3, ERBB4, EZH2, FGFR2, FC KIT, KRAS, MAP2K1, MAP2K2, MAP2K4, MAP2K7, MAPK1, MET, MTOR, MYD88, NRAS, NTRK1, PDGFRA, PIK3CA, PO	SFR3, GNA11, GNAQ, HRAS, IDH1, IDH2, JAK1, JAK2, JAK ILE, RAF1, RET, RIT1, ROS1, SF3B1, SMO, SPOP, TERT
RCA2, CURNZA, MORZ, MORD, PTEN, RB1, 1P33	Gene amplification: ALK, AR, BRAF, CONDI, CDKA, CDK6, EGFR, ESRIJ, FGFR1, FGFR2, FGFR4, IGF1R, KT, KRAS, MDM2, MET, MYC, MYCN, POGFRA, PIK3CA Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TFS3 Gene fusion: ATZ, ALK, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFRA, PDGFRB, PIK3CA, PRAGC, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSP02, RSP03 TERT	Hotspot mutation or deleterious mutation: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53	
FR, ESR1, FGFR1, FGFR2, FGFR4, IGF1R, KIT, KRAS, MDM2, MET, MYC, MYCN, PDGFRA, PIK3CA	Deep gene deletion: ATM, BRCA1, BRCA2, COKNZA, MSH2, MSH6, PTEN, RB1, TP53 Gene fusion: ATZ, ALK, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRA5, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFR4, PDGFR8, PIK3CA, PPARG, PIKACA, PIKACB, PTEN, RAD51B, RAF1, RELA, RET, RO51, RSP02, RSP03 TERT	Gene amplification: ALK, AR, BRAF, CCND1, CDK4, CDK6, EGFR, ESR1, FGFR1, FGFR2, FGFR4, IGF1R, KIT, KRAS	5, MDM2, MET, MYC, MYCN, PDGFRA, PIK3CA
ISH6 PTEN BR1 TP53	Gene fusion: AKZ, ALK, AR, AXL, BRAF, EGFR, ERBB2, EBBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR2, FGFR2, FGFR3, FGF, TLT3, JAKZ, KRAS, MET, MT8, MTBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFR8, PK3CA, PRARG, PKKACA, PRKACB, PTEN, RAD51B, RAF1, RELA, RET, RO51, RSP02, RSP03 TERT	Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53	
enter transferrer i transferrer enter ente		Gene fusion: AKT2, ALK, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FG	3FR3, FGR, FLT3, JAK2, KRAS, MET, MYB, MYBL1, NF1, PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSPO2, RSPO3,
, ERG, ESRI, ETVI, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MET, MYB, MYBL1, NF1, FRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSP02, RSP03	The patient tested negative for microsatellite instability.	NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, F TERT	
ERG, ESRI, ETVI, ETV3, EGV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MET, MYB, MYBL1, NF1, FRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSP02, RSP03,	the particulation regime to the control of the second se	NOTOH1, NOTOH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, F TERT The patient tested negative for microsatellite instability.	
IKOAK, CURREA, MOHE, MOHE, MER, KISI, 173 FR, ESRL, FGFRL, FGFRL, FGFR4, IGFLR, KIT, KRAS, MDM2, MET, MYC, MYCN, PDGFRA, PIK3C ISHE PTEN BRIT TPS3	IERI	Hotspot mutation: ACT, ALK, AR, ARAF, BAAF, COKA, CTNNBJ, EGFR, ERIBEZ, ENBES, ERIBBA, EZIZ, FGRZ, N. KIT, RADS, MAPKIX, MAPZIX, MAPZIX, MAPZIX, MARK, MET, MTOR, MYOBS, NIKA, SITKL, POGFRA, PIGSCA, PO Hotspot mutation or deleterious mutation: ATM, BRCA1, BRCA2, CDIA/2A, MSH2, MSH6, PTEN, RB1, TPS3 Gene amplification: ALK, AR, BRAF, COND., CDKA, CDKAE, GEFR, ESR1, FGFR1, FGFR2, FGFRA, IGF1R, KT, KAAS Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TPS3 Gene fusion: AXT2, ALK, BRA, ALL, BRAF, EGFR, RBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FG	SHAS, GWALI, GWAD, HHAS, IDHI, IDHZ, JA LE, RAFI, RET, RITI, ROSI, SF3BI, SMO, S MDM2, MET, MYC, MYCN, PDGFRA, PIK3C GFR3, FGR, FIT3, JAC2, KRAS, MET, MYB, M YTEN, RADSIB, RAFI, RELA, RET, ROSI, RS
ISH6 PTEN RR1 TP53	Gene fusion: AG72, ALX, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FL73, JAC2, KRA5, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFR4, POGFR8, PK3C4, PPARG, PRKAC4, PRKAC6, PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSP02, RSP03 TERT	Deep gene deletion: ATM, BRCA1, BRCA2, CDKN2A, MSH2, MSH6, PTEN, RB1, TP53	
man of Litheral Lithera	NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, POGFRA, PDGFRB, PK3CA, PPARG, PRKACA, PKKACB, PTEN, RADS1B, NAF1, RELA, NET, NOS1, NSP02, NSP03 TERT	Gene fusion: AKT2, ALK, AR, AXL, BRAF, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FG	3FR3, FGR, FLT3, JAK2, KRAS, MET, MYB, MYBL1, NF1,
, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRA5, MET, MYB, MYBL1, NF1,	IERI	the second of th	PTEN, RAD51B, RAF1, RELA, RET, ROS1, RSPO2, RSPO3
ERG, ESRI, ETVI, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3. JAK2, KRAS, MET, MYB, MYBL1, NF1, FRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RELA, RET, RO51, RSP02, RSP03,		NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, F	

RB2 is the gene in solid red bubbles right above the up arrow in the filter column (towards the right).	रे = 9 X
BB2 is the gene in solid red bubbles right above the up arrow in the filter column (towards the right).	• Q \$ 1
Source Lange and Source (Secure Control of Source Control of	रे = 0 X
Image: Second State Research Image: Control of	ত ত <u>১</u> জ Q <u>छ</u> ।
Construit 0.75 0.75 MAPC 0.75 0.75 Name 0.75 0.75	* Q \$ 1
Andre and and an and an and an and an and an	
Name 0.4% MID COL 0 Failed All Address angelet makes 70.311 RAA 600 2 0 Failed makes Review Review Review 0 0 Failed makes Review Review Review 0 0 0 Review Review Review 0 0 0 Called the same family dependence Review 0 0 0 Called the same family dependence Review 0 0 0	
NA Att Angel Hart I 1932 AA 60 C C Battarra Attarra Attarr Attarra Attarra At	
Review	
Named and that and targets filtered and targets fin	
Come to spind to get all the Period Larger Copy Number Abreations ** Provide and any shared rease	
© Show 27 rejected varients	
varlent. celularly adjusted CN (N7s cap) celularly adjusted lower bound (N7s cap) celularly adjusted upper bound (N7s cap) fiber 1	approved
The second	
MYC day surface alimation 454 396 5.53 services transfer alimation - 3 stars report.	0
EXERCI2 copy number alteration 6.38 5.71 7.05 2	
FORStorgynumber alkination 7.01 528 8.73 4	*
	*
	2 20104
🚳 🤗 🚆 🖸 🚺 🗱 💷 📴 🐨 🕎 👘 👘	× × 220 PM 94/2018
	220 PM 9/4/2018
	220 PM 9/4/2018

	Comprehensive Molecular Profiling: Clinical Utility, Her-2 with Tissue Specificity-					
	IT DEPENDS ON THE TISSUE					
	The role of NGS/Comprehensive molecular profiling for a patient with newly diagnosed metastatic breast is CA and perhaps gastric /GE Jn is limited.					
	NGS has utility in 2 nd line setting for metastatic breast CA					
	Comprehensive molecular profiling to screen for HER-2 amplification in RAS WT metastatic Colon Ca should be considered.					
	Testing can identify highly actionable alterations other than HER-2 amplification; BRAF V600E, NTRK and MSI					
	49 © 2018 The Permanente Medical Group PERMANENTE MEDICINE. The Permanente Medical Group					
,	49					

Precision Oncology Symposium

Biomarkers with Cross-Disease Relevance Philip C. Mack, PhD NOTES

Novel and Emerging targets: NTRK, FGFR, and beyond Sai-Hong Ignatius Ou, MD PhD

> ANCO-UCSF Precision Oncology Symposium November 8, 2019

Health Science Clinical Professor Chao Family Comprehensive Cancer Center University of California Irvine School of Medicine Orange, CA92868, USA

siou@uci.edu

Disclosure

Stock Ownership	Turning Point Therapeutics (TPTX)		
Scientific	Turning Point Therapeutics (former), AnHeart Therapeutics		
Advisory Board			
Speaker Bureau	Pfizer, Astra Zeneca, Roche/Genentech, Takeda/ARIAD,		
	IVIEICK		
Consultant	Pfizer, Roche/Genentech, Astra Zeneca, Takeda/ARIAD		

Fusion partners identified in <i>NRG1+</i> NSCLC				
Number	Fusion Partner	Fusion breakpoint	Reference	
1	CD74	CD74-NRG1	Fernandez-Cuesta, Cancer Discovery, 2014	
2	SLC3A2	SLC3A2-NRG1	Nakaoku, Clin Cancer Res, 2014	
3	SDC4	SDC4-NRG1 (S4,N6)	Dhanasekaran, Nat Commu 2014	
4	RBPMS	RBPMS-NRG1 (R6,N6)	Dhanasekaran, Nat Commu 2014	
5.	WRN (SqCC)	WRN-NRG1	Dhanasekaran, Nat Commu 2014	
6	VAMP2	VAMP2-NRG1	Jung, J Thorac Oncol, 2015; Shim, J Thorac Oncol 2015	
7	KIFI3B	KIFI3B-NRG1	Xia, International J. Surgical Pathology, 2017	
8	THAP7	THAP7-NRG1 (T6, N6)	Drilon, Cancer Discovery, 2018	
9	SMAD4	SMAD4-NRG1	Drilon, Cancer Discovery, 2018	
10	ATP1B1	ATP1B1-NRG1 (A2,N2)	Jonna, Clin Cancer Res 2019	
11	TNC	TNC-NRG1 (T11, N6)	Jonna, Clin Cancer Res 2019	
12	MDK	MDK-NRG1 (M5, N6)	Jonna, Clin Cancer Res 2019	
13	MRPL13	MRPL13-NRG1 (M3,N2)	Jonna, Clin Cancer Res 2019	
14	DIP2B	DIP2B-NRG1 (D2, N2)	Jonna, Clin Cancer Res 2019	
15*	ROCK1	ROCK1-NRG1 (R1, N2)	Jonna, Clin Cancer Res 2019	
16*	PARP8	PARP8-NRG1 (P2, N2)*	Jonna, Clin Cancer Res 2019	
17*	DPYSL2	DPYSL2-NRG1 (D8, N2)*	Jonna, Clin Cancer Res 2019	
18	ITGB1	ITGB1-NRG1 (I5, N2)	Pan, JTO 2019	
*out of frame variant of unknown significance				

Fusion partners identified in NRG1+ Pancreatic Adenocarcinoma					
Number	Fusion Partner	Fusion breakpoint	Reference		
1	CD74	CD74-NRG1	Drilon 2018		
2	ROCK1	ROCK1-NRG1	Drilon 2018		
3	ATP1B1	ATP1B1-NRG1	Heining 2018, Jonna 2019		
4	APP	APP-NRG1-APP	Heining 2018		
5.	SARAF (5'), CHD6 (3')	SARAF-NRG1-CHD6	Heining 2018		
6	CDH1	CDH1-NRG1	Jonna 2019		
7	CVTCN1	VTCN1-NRG1	Jonna 2019		
*out of frame variant of unknown significance					

Solid tumor	NRG1 fusion	Reference
Breast	FOXA1-NRG1	Drilon 2019
	AKAP13-NRG1	Drilon 2019
	ADAM9-NRG1	Jonna 2019
	COX10-AS1-NRG1	Jonna 2019
Bladder cancer	GDF15-NRG1	Jonna 2019
Cholangiocarcinoma	ATP1B1-NRG1	Jones 2017, Jonna 2019
	NOTCH2-NRG1	Jonna 2019
Colorectal adenocarcinoma	POMK-NRG1	Jonna 2019
Head and Neck cancer	THBS1-NRG1	Drilon 2018
	PDE7A-NRG1	Drilon 2018
Ovarian adenocarcinoma	RAB3IL1-NRG1	Drilon 2018
	TSHZ2-NRG1	Jonna 2019
	SETD4-NRG1	Jonna 2019
	ZMYM2-NRG1	Jonna 2019
Prostate adenocarcinoma	NRG1-STMN2*	Drilon 2018
Renal cell carcinoma	PCM1-NRG1	Drilon 2018
	RBPMS-NRG1	Jonna 2019
Sarcoma	WHSC1L1-NRG1	Jonna 2019
Sinonasal teratocarcinosarcoma	HMBOX1-NRG1	Jonna 2019
Uterine	NRG1-PMEPA1*	Drilon 2019

	List of case reports of inhibiting HER2/3 in NRG1 fusions						
Case	Age	Sex	NRG1 fusions variant	Solid malignancies	Treatment modality	Duration of Response	References
1	42	Μ	SLC3A2-NRG1	LUAC	Afatinib 40 mg qD	12 months	Gay
2	62	Μ	CD74-NRG1	LUAC (mucinous)	Afatinib 40 mg qD	10 months	Gay
3	43	F	SDC4-NRG1	LUAC	Afatinib 30 mg qD	12 months	Jones
4	38	F	ATP1B1-NRG1	Intrahepatic cholangiocarcinoma	Afatinib	8 months	Jones
5	62	F	CD74-NRG1	Lung IMA	Afatinib 40 mg qD	6.1 months (26 weeks)	Cheema
6	81	Μ	CD74-NRG1	Lung IMA	Afatinib 40 mg qD	Stable disease for 6 weeks	Drilon
7	56	F	SDC4-NRG1	Lung IMA	Afatinib 40 mg qD	Progression disease	Drilon
8	51	М	CD74-NRG1	Lung IMA	Afatinib 40 mg qD	Progressive disease	Drilon
9	86	М	CD74-NRG1	Lung IMA	GSK2849330* (anti-HER3 mab)	19 months**	Drilon
10	55	F	SLC3A2-NRG1	Lung IMA	Lumretuzumab*** + erlotinib	Stable disease for ~ 3.8 months	Kim
11	42	F	SLC3A2-NRG1	Lung IMA	Lumretuzumab + erlotinib	Stable disease for ~ 3.8 months	Kim
*inhibits ** no res	*inhibits NRG1 binding to HER3 and inhibits HER3 heterodimeriziation ** no response to afatinib after disease progression on GSK2849330						

in response to analinia antileR3 monoclonal antibody
IMA: Invasive mucinous adenocarcinoma; M:Male; F:Female; LUAC: lung adenocarcinoma; mab:monoclonal antibody

Precision Oncology Symposium

Clinical Trials in Precision Oncology: Current State and Future Perspectives Pamela Munster, MD

Precision Oncology Symposium

Patient Access To Molecular Testing Michael Zachary Koontz, MD

Precision Oncology: Patient Access

M. Zach Koontz, MD

Pacific Cancer Care

Monterey, CA

Disclosures

- No monetary or other affiliations with commercial entity of relevance
- No desire to promote/defame any company
- First exposure to NGS platform for patients while at Stanford, Foundation One 2012
- Where I work: Pacific Cancer Care
 6 Oncologists/hematologists and 4 RNPs
- I spend (like you) an unbearable amount of time on peer-to-peer calls, letters, reviews, appeals

When is Precision Oncology Relevant?

When is it NOT?

Relevant Definitions

- Precision Oncology, broadly stated, is any test/ treatment that is highly specific to patient, disease, or tissue
- Here, specifically mean germline and somatic mutation panels

NOT lung (EGFR, BRAF, ALK, ROS1), colorectal (RAS/RAF), breast (ER/PR, HER2), PDL1

 Current panels detect mutations, rearrangements, deletions/insertions, frame-shifts, over-expression, sometimes RNA, protein expression

Question 1:

- How many Genetic/NGS panels do you personally order per month?
- . 0-2
- . 3-5
- . 5-10
- . >10

Precision Oncology: Patient Access

Necessary and sufficient for Access:
 Patient Need? →.

Test Available? \rightarrow .

Provider Knowledge \rightarrow .

Test Covered AND/OR Reasonably Priced

California Cancer Statistics

California

AT A GLANCE

Estimated new cases, 2019 186,920 Estimated deaths, 2019 60,590	Incidence rates, 2011- 2015 411.2 Average annual rate per 100,000, age adjusted to the 2000 US standard population.	Death rates, 2012-2016 145.1 Average annual rate per 100,000, age adjusted to the 2000 US standard population. Rates for PR are for 2011-2015.
---	--	---
Precision Oncology in Community Practice

Where are patients treated?

Community practices still treat > 50% of patients (COA, 2016)

Cancer care growing complexity

Disease Breadth

Patient Volume

Aging population

Diagnostic Options

Treatment Decisions

Payers

Practice Pressures

ASCO State of Cancer, 2017

Need: Whom Should We Test?

Somatic testing

When?

Upfront, or wait until burn through standard options?

Where?

Primary or metastatic sites

Germline testing

Any ovarian cancer, or family history

Breast with risk factors*

Any pancreatic cancer

High risk prostate

Others ?????

Germline: NCCN HBOC

National Cancer NCCN Network[®]

Comprehensive NCCN Guidelines Version 3.2019 **BRCA-Related Breast and/or Ovarian Cancer Syndrome**

NCCN Guidelines Index Table of Contents Discussion

BRCA1/2 TESTING CRITERIA^{a,b}

Meeting one or more of these criteria warrants further personalized risk assessment, genetic counseling, and often genetic testing and management.

- Testing of an individual without a cancer diagnosis should only be considered when an appropriate affected family member is unavailable for testing.
- Individual from a family with a known BRCA1/2 pathogenic/likely pathogenic variant, including such variants found on research testing
- Personal history of breast cancer^c + one or more of the following:
- Diagnosed ≤45 y
- Diagnosed 46-50 y with:
- An additional breast cancer primary at any aged
- \geq 1 close blood relative^e with breast cancer at any age $\diamond \geq$ 1 close blood relative^e with high-grade (Gleason
- score ≥7) prostate cancer
- An unknown or limited family history^a
- Diagnosed ≤60 y with:
- Triple-negative breast cancer
- Diagnosed at any age with: ◊ ≥1 close blood relative^e with:
- breast cancer diagnosed ≤50 y; or
- ovarian carcinoma:f or
- male breast cancer; or
- metastatic prostate cancer:^g or
- pancreatic cancer
- ◊ ≥2 additional diagnoses^d of breast cancer at any age in patient and/or in close blood relatives
- Ashkenazi Jewish ancestry^h
- Personal history of ovarian carcinoma

^aFor further details regarding the nuances of genetic counseling and testing, see BR/ OV-A.

- ^bIrrespective of degree of relatedness.
- ^CFor the purposes of these guidelines, invasive and ductal carcinoma in situ breast cancers should be included.
- ^dTwo breast cancer primaries includes bilateral (contralateral) disease or two or more clearly separate ipsilateral primary tumors diagnosed either synchronously or asynchronously.
- ^eClose blood relatives include first-, second-, and third-degree relatives on same side of family. (See BR/OV-B)
- Includes fallopian tube and primary peritoneal cancers. BRCA-related ovarian cancers are associated with epithelial, non-mucinous histology. Lynch syndrome can be associated with both non-mucinous and mucinous epithelial tumors. Be attentive for clinical evidence of Lynch syndrome (see NCCN Guidelines for Genetic/Familial. High-Risk Assessment: Colorectal). Specific types of non-epithelial ovarian cancers and tumors can also be associated with other rare syndromes. Examples include an association between sex-cord tumors with annular tubules and Peutz-Jeghers syndrome or Sertoli-Leydig tumors and DICER1-related disorders.

- · Personal history of male breast cancer
- Personal history of pancreatic cancer¹
- Personal history of metastatic prostate cancer^g
- Personal history of high-grade prostate cancer (Gleason score ≥7) at any age with
- ►≥1 close blood relatives^e with ovarian carcinoma. pancreatic cancer, or metastatic prostate cancer^g at any age or breast cancer <50 y; or
- ≥2 close blood relatives^e with breast, or prostate cancer (any grade) at any age; or
- Ashkenazi Jewish ancestry^h
- BRCA1/2 pathogenic/likely pathogenic variant detected by tumor profiling on any tumor type in the absence of germline pathogenic/likely pathogenic variant analysis
- Regardless of family history, some individuals with an BRCA-related cancer may benefit from genetic testing to determine eligibility for targeted treatment
- An individual who does not meet the other criteria but with ≥1 first- or second-degree blood relativek meeting any of the above criteria. The significant limitations of interpreting test results for an unaffected individual should be discussed.

BRCA See testina Follow-up criteria (BRCA-2) met

- ^gMetastatic prostate cancer is biopsy-proven and/or with radiographic evidence and includes distant metastasis and regional bed or nodes. It is not a biochemical recurrence.
- ^hTesting for Ashkenazi Jewish founder-specific pathogenic/likely pathogenic variant(s), should be performed first. Comprehensive genetic testing may be considered if ancestry also includes non-Ashkenazi Jewish relatives or if other BRCA-related criteria are met. Founder pathogenic/likely pathogenic variants exist in other populations.
- Approximately 2%-5% of unselected cases of pancreatic adenocarcinoma will have a BRCA1/2 pathogenic/likely pathogenic variant. However, the disease is highly lethal and the option to test the affected relative may not be
- available in the future. Thus, there may be significant benefit to family members in testing these patients near the time of diagnosis. In addition, increasing evidence suggests that identification of a BRCA1/2 pathogenic/likely pathogenic variant may direct use of targeted therapies for patients with pancreatic cancer (See NCCN Guidelines for Pancreatic Adenocarcinoma). (Holter S, Borgida A, Dodd A, et al. J Clin Oncol 2015;33:3124-3129. Shindo K, Yu J, Suenaga M, et al. J Clin Oncol 2017;35:3382-3390.)
- Eg, PARP inhibitors for ovarian cancer and metastatic HER2-negative breast cancer; platinum therapy for prostate cancer. See the relevant NCCN treatment guidelines (eg. NCCN Guidelines for Breast Cancer: NCCN Guidelines for Prostate Cancer) for further details.
- ^kThis may be extended to an affected third-degree relative if related through two male relatives (eg, paternal grandfather's mother or sister).

Germline: NCCN Prostate Cancer

National Comprehensive Cancer Network®

^dFamily history criteria and consideration to prompt genetic testing:

- A strong family history of prostate cancer consists of: brother or father or multiple family members who were diagnosed with prostate cancer (but not clinically localized Grade Group 1) at less than 60 years of age or who died from prostate cancer
- Ashkenazi Jewish ancestry
- ►≥3 cancers on same side of family, especially diagnoses ≤50 years of age: bile duct, breast, colorectal, endometrial, gastric, kidney, melanoma, ovarian, pancreatic, prostate (but not clinically localized Grade Group 1), small bowel, or urothelial cancer

Pancreas: POLO Treatment Implications

ORIGINAL ARTICLE

Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer

N Engl J Med 2019; 381:317-327

Precision Oncology: Patient Access

Necessary and sufficient for Access:
 Patient Need? →.

Test Available? \rightarrow .

Provider Knowledge \rightarrow .

Test Covered AND/OR Reasonably Priced

Available: Germline Testing Options

Available: Somatic Mutation Testing

16

Question 2

- How comfortable do you feel choosing somatic or germline testing in general?
- 1. I always know exactly what panel
- 2. I'm fairly comfortable ordering
- 3. I'm somewhat Uncomfortable ordering
- 4. Honestly, often I have no idea which one

Question 3

- Estimate the percent of your patients' care positively impacted (ie, improved OS or PFS) as a result of somatic tumor profiling.
- **1**. <1%
- **2**. 1-5%
- **3**. 5-20%
- **4**. 20-50%
- 5. all of them

Precision Oncology: Patient Access

Necessary and sufficient for Access:
 Patient Need? →.

Test Available? \rightarrow .

Provider Knowledge \rightarrow .

Test Covered AND/OR Reasonably Priced

Access to Drugs

"I go home today. They cured me using this new miracle drug. I'm afraid it'll be years before it's approved for humans."

Knowledge: Does it make a difference?

Journal of Clinical Oncology® An American Society of Clinical Oncology Journal

DEVELOPMENTAL THERAPEUTICS AND TUMOR BIOLOGY (NONIMMUNO)

Utility of somatic mutation panel testing in patients with advanced cancer receiving treatment in an Irish teaching hospital.

Hadia Khan, Louise O' Callaghan, Gul Ahmed, Brian Richard Bird, Derbrenn O'Connor, Conleth <u>G. Murphy</u>

	Number	Percent
Total tests	74	100%
Mutation detected	39	53%
Potentially actionable	21	28%
Test-based treatment	9	12%

KYT Program

Clinical Cancer Research	
---------------------------------	--

h	Q	

Searc

Advanced Search

Home About Articles For Authors Alerts News

Personalized Medicine and Imaging

Molecular Profiling of Pancreatic Cancer Patients: Initial Results from the Know Your Tumor Initiative

Michael J. Pishvaian, Robert J Bender, David Halverson, Lola Rahib, Andrew E. Hendifar, Sameh Mikhail, Vincent Chung, Vincent J Picozzi, Davendra Sohal, Edik M Blais, Kimberly Mason, Emily E. Lyons, Lynn M Matrisian, Jonathan R. Brody, Subha Madhavan, and Emanuel F. Petricoin

DOI: 10.1158/1078-0432.CCR-18-0531 (B) Check for updates

- 640 pancreatic cancer patients
- 172 (27%) with "highly actionable" mutations
- 17 (2.7%) treated with identified targeted drug
- PFS 4.1mo vs 1.9mo, OS non-sig improvement

Pacific Cancer Care/ My Practice

Germline

Consistent with guidelines, adherent to common sense 72 in 2018 (3.5 med/onc)

Somatic Panels

Since 2013:

> 150 ordered

Foundation: 111 reports, 10 in process, 43 cancelled Practice 2018: 67

Question 4

Have you ever had a patient file bankruptcy because of cancer care?

- 1. Yes
- 2. No
- 3. I don't know
- 4. I'm too afraid to answer

Cost of Care

Survey 2012 LIVESTRONG

1/3 working-age patients in debt after cancer>50% more than \$10k3% file bankruptcy

- Cost of cancer drugs can exceed \$100k/year
- Imaging
- Hospitalization costs (\$2-4k/day)
- Loss of work

Cost to Patients: ASCO State of Cancer 2017

Percentage of staff that discuss cost of care with patients

California Payers

Covered California Health Insurance Carriers

Find Health Insurance Companies Offered on the California Health Exchange

- We have >100 payers, different processes, contacts, payment rules, etc.
- 2013 study: 1/3 had some kind of policy, moderate consistency, half specifically excluded a genetic test

Personalized Medicine. 2013;10(3):235-243.

Cost/Coverage

"Most health insurance plans will cover the cost of genetic testing when recommended by a physician. However, all coverage and reimbursement is subject to Medicare, Medicaid, and third-party payer benefit plans. Therefore, ASCO strongly encourages you to verify with the patient's insurer to understand what type of services will be covered." -ASCO 2019 website

https://www.asco.org/practice-guidelines/cancer-care-initiatives/genetics-toolkit/genetic-testing-coverage-reimbursement

Medicare, ACA

 Medicare: Tests performed in the absence of signs, symptoms, complaints, or personal histories of disease or injury are not covered unless explicitly authorized by statute..

"...therefore, Medicare does not currently provide coverage for genetic testing in individuals without a personal history of cancer. [except]:

[BRCA1/2 meeting criteria...]

[CRC meeting criteria...]"

 ACA: esssential health benefits clause only covers BRCA1/2

Sample Germline Plan Policy

 Aetna considers genetic testing medically necessary to establish a molecular diagnosis of an inheritable disease when *all* of the following are met:

→The member displays clinical features, or is at direct risk of inheriting the mutation in question (pre-synctomatic); and

 \rightarrow The result of the test will direct impact the treatment being delivered to the member; and

 \rightarrow After history, physical examination, pedigree analysis, genetic counseling, and completion of onventional diagnostic studies, a definitive diagnosis remains uncertain, and one of the following diagnoses is suspected (this list is not all-inclusive); and

 \rightarrow Disease-specific criteria met.

Cost of genetic testing

- **\$150 \$20,000**
- Most range \$500-\$1500
- Overwhelmingly this has not been a barrier to testing
 ***with exceptions

The Industry is our Ally

- Invitae offers FREE genetic testing and counseling for patients diagnosed with
 - Pancreas adenocarcinoma
 - Pancreas NET
 - Prostate cancer stage II+
- Most (if not all) companies have policies to not go after patients and will work not only with them, but for them

Help is out there!

🚯 🍪 ANCO 📢

Howdy, Zach 📃 🔍

ABOUT US MEMBERSHIP ADVOCACY JOB BOARD CLINICAL TRIALS MEMBER PORTAL CALENDAR CONTACT

Patient and Reimbursement Assistance Programs

Here you will find providers to assist practices with reimbursement and financial matters.

American Society of Hematology http://www.hematology.org/Clinicians/Drugs/Programs/

assistPoint http://www.assistpoint.com

Association of Community Cancer Centers Patient Assistance and Reimbursement Guide http://www.accc-cancer.org/home/learn/publications/patient-assistance-and-reimbursement-guide

CancerCare Co-Payment Assistance Foundation http://www.cancercarecopay.org

ANCO Member Portal	
Welcome Zach,	
Practice and Professional Resources	•
Patient and Reimbursement Assistance Programs	•
Search Clinical Trials	•
Post to Clinical Trials	•
Search Job Board	•
Post to Job Board	•

ANCO Advocacy

- Part of ANCO mission, to advocate for providers and patients, communicates concerns with DHS, Sacramento, private insurers
- Supports/Opposes relevant State and National Legislation with the help of Noteware and Rosa Government Relations
- AB1860 \$250 monthly cap oral medication legislation

Conclusion: Challenges/Gaps

- Identifying which patients to test evolving
- Date of Service Rule
- Duplicate testing
- Drug coverage once identified target?
- Interpreting tests and finding therapies

Conclusion: The Good News

- Supreme court says you can't own a gene
- NGS is getting cheaper, faster, more efficient, with higher genome coverage and fidelity
- More "options" exist
- Industry has been supportive thus far
- ASCO, ASH, ANCO and other organizations are advocating for our patients

Conclusion

Necessary and sufficient for Access: Patient Need? → MOSTLY, YES

Test Available? \rightarrow YES

Provider Knowledge \rightarrow YES?

Test Covered AND/OR Reasonably Priced

SO FAR SO GOOD*

Thanks!

ANCO Sponsors Panel members

17 + Edd Carl

