ANCO/MOASC Presents

Precision Oncology Symposium

November 5, 2022 InterContinental Hotel San Francisco

ANCO Educating and Empowering the Northern California Cancer Community M O A S C

MEDICAL ONCOLOGY ASSOCIATION OF SOUTHERN CALIFORNIA, INC.

The opinions expressed in this publication are those of the participating faculty and not necessarily those of the Association of Northern California Oncologists (ANCO) or Medical Oncology Association of Southern California, (MOASC), its members, or any supporters of this meeting.

Copyright © 2022 Association of Northern California Oncologists. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, without first obtaining written permission from the Association of Northern California Oncologists. ANCO/MOASC

presents

Precision Oncology Symposium

Saturday, November 5, 2022; 8:00AM-5:00PM InterContinental Hotel San Francisco

Agenda & Schedule

Registration, Continental Breakfast, and Engage with Exhibiting Supporters	
Welcome and Introduction	David R. Gandara, MD Ashkan Lashkari, MD Thach-Giao Truong, MD
Challenges & Opportunities to Clinical Application of Precision Oncology Across the Cancer Care Continuum	David R. Gandara, MD
Panel Discussion: Greatest Challenge & Greatest Opportunity in Various Tumor Types	Moderator: David R. Gandara, MD Panelists: Jennifer Caswell-Jin, MD Heinz-Josef Lenz, MD, FACP Mamta Parikh, MD, MS Jonathan Riess, MD, MS Sachdev Thomas, MD
Q and A	
Tissue versus Liquid Biopsy Diagnostics	Heinz-Josef Lenz, MD, FACP (Liquid) Carlos Suarez, MD (Tissue)
Q and A	
Molecular Testing at Time of Initial Diagnosis of Advanced Stage Cancer	Eric Collisson, MD
Immunophenotyping at Time of Initial Diagnosis of Advanced Stage Cancer	Arta Monjazab, MD, PhD
Panel: Targeted Therapy Vs IO and the Challenges of Getting Therapy to the Right Patients with Initial Testing at Diagnosis	Moderator: Thach-Giao Truong, MD Panelists: Kim Margolin, MD Mamta Parikh, MD, MS Jonathan Riess, MD, MS
	Registration, Continental Breakfast, and Engage with Exhibiting Supporters Welcome and Introduction Challenges & Opportunities to Clinical Application of Precision Oncology Across the Cancer Care Continuum Panel Discussion: Greatest Challenge & Greatest Opportunity in Various Tumor Types Q and A Tissue versus Liquid Biopsy Diagnostics Q and A Molecular Testing at Time of Initial Diagnosis of Advanced Stage Cancer Immunophenotyping at Time of Initial Diagnosis of Advanced Stage Cancer Panel: Targeted Therapy Vs IO and the Challenges of Getting Therapy to the Right Patients with Initial Testing at Diagnosis

10:50 am	Molecular Testing at Time of Acquired Resistance in Oncogene-Driven Cancers— Lung Cancer, Newest Treatment Approaches for a Prototype	Jonathan Riess, MD, MS
11:00 am	Molecular Testing at Time of Acquired Resistance in Other Histologies—The Experience in Breast Cancer	Jennifer Caswell-Jin, MD
11:10 am	Panel Discussion: Tumor Type-Specific Application of Molecular Testing at Initial Diagnosis & at PD in Oncogene-Driven Cancers	Moderator: David R. Gandara, MD Panelists: Chloe Atreya, MD, PhD Jennifer Caswell-Jin, MD Eric Collisson, MD Heinz-Josef Lenz, MD, FACP Mamta Parikh, MD, MS Jonathan Riess, MD, MS
11:40 am	Case-Based Molecular Tumor Board (Selected Cases from Various Tumor Types)	Moderator: Thach-Giao Truong, MD Panelists: Jennifer Caswell-Jin, MD Carlos Suarez, MD Sachdev Thomas, MD
12:05 pm	Germline Molecular Testing	James Ford, MD
12:20 pm	Q and A	
12:25 pm	Lunch and Engage with Exhibiting Supporters	
1:20 pm	Detection Of Post-Surgical Minimal Residual Disease (MRD) and Actionability in GI	Chloe Atreya, MD, Phd
1:30 pm	Detection Of Post-Surgical Minimal Residual Disease (MRD) And Actionability In GU	Mamta Parikh, MD, MS
1:40 pm	Panel Discussion: Tumor Type-Specific Application of MRD Detection	Moderator: Heinz-Josef Lenz, MD, FACP Panelists: Chloe Atreya, MD, PhD Ashkan Lashkari, MD Mamta Parikh, MD, MS Sachdev Thomas, MD

2:00 pm	Molecular Tumor Board: Tumor Type Agnostic Oncogene Targets	Moderator: Ashkan Lashkari, MD Panelists: James Ford, MD David R. Gandara, MD Mamta Parikh, MD, MS Sachdev Thomas, MD
2:20 pm	Panel Discussion: Patient Advocacy Meets Precision Oncology	Moderator: Danielle Hicks Panelists: Darcie Green Samantha Guild, JD Phuong Ly-Gallagher
2:50 pm	Q and A	
2:55 pm	Cellular Therapy in Solid Tumors	Mohamed Abou-el-Enein, MD, PhD, MSPH
3:15 pm	Application of Precision Medicine to Early Diagnosis & Screening	Mohammed Kashani-Sabet, MD
3:35 pm	Q and A	
3:50 pm	Closing Comments	David R. Gandara, MD Ashkan Lashkari, MD Thach-Giao Truong, MD
4:00 pm -	Conference Reception with Exhibiting	
5:00 pm	Supporters - Pacific Terrace	

Program Faculty

Chair David R. Gandara, MD University of California, Davis

Faculty Mohamed Abou-el-Enein, MD, PhD, MSPH University of Southern California, Los Angeles

Chloe Atreya, MD, PhD University of California, San Francisco

> Jennifer Caswell-Jin, MD Stanford University

Eric Collisson, MD University of California, San Francisco

> James Ford, MD Stanford University

Stanioru Oniversity

Darcie Green Latinas Contra Cancer

Samantha Guild, JD AIM at Melanoma Foundation

Danielle Hicks GO2 Foundation for Lung Cancer

Mohammed Kashani-Sabet, MD California Pacific Medical Center

> Ashkan Lashkari, MD Private Practice

Heinz-Josef Lenz, MD, FACP University of Southern California, Los Angeles

> Phuong Ly-Gallagher Patient Advocate

Kim Margolin, MD Saint John's Cancer Institute Arta Monjazab, MD, PhD University of California, Davis

Mamta Parikh, MD, MS University of California, Davis

Jonathan Riess, MD, MS University of California, Davis

> Carlos Suarez, MD Stanford University

Sachdev Thomas, MD The Permanente Medical Group

Thach-Giao Truong, MD The Permanente Medical Group

Disclosure of Relevant Financial Relationships

The *Faculty* members have disclosed the following actual or potential conflicts of interest in regard to this program:

Mohamed Abou-el-Enein, MD, PhD, MSPH, disclosed that he does not have any relevant financial relationships with any commercial interests.

Chloe Atreya, MD, PhD, disclosed that she has received grant and or research support from Merck, Bristol-Meyers Squibb, Erasca, and Guardant Health. She also disclosed she is on the Advisory Board of Array Biopharma, Pfizer, Foundation Medicine, and Pionyr Immunotherapeutics.

Jennifer Caswell-Jin, MD, disclosed that she has received grant/research support from QED Therapeutics, and Effector Therapeutics.

Eric Collisson, MD, disclosed that he is a Board Member of Tatara and an advisor/reviewer for Valar. He also disclosed that he is a stock shareholder (excluding mutual funds) of Tatara, Valar, and Guardant Health.

James Ford, MD, disclosed that he has received grant and or research support from Genentech, Merus, and PUMA.

David R. Gandara, MD, disclosed that he is a has received institutional grant and or research support from Amgen, AstraZeneca, Genentech, and Merck. He also disclosed that he is an advisor/reviewer, panel member, and part of the Speakers Bureau for Adagene, Inc., AstraZeneca, Roche-Genentech, Guardant Health, IO Biotech, Oncocyte, and OncoHost. Additionally, he disclosed he is a consultant, honorarium recipient, and independent contractor of Lily, Merck, and Novartis.

Darcie Green disclosed that she does not have any relevant financial relationships with any commercial interests.

Samantha Guild, JD, disclosed that she does not have any relevant financial relationships with any commercial interests.

Danielle Hicks disclosed that she does not have any relevant financial relationships with any commercial interests.

Mohammed Kashani-Sabet, MD, disclosed that he is a consultant for Bristol-Meyers Squibb and panel member for DNARx, LLC. He also disclosed that he is a stock shareholder (excluding mutual funds) of Melanoma Diagnostics, Inc. and DNARx, LLC.

Ashkan Lashkari, MD, disclosed that he does not have any relevant financial relationships with any commercial interests.

Heinz-Josef Lenz, MD, FACP, disclosed that he does not have any relevant financial relationships with any commercial interests.

Phuong Ly-Gallagher, disclosed that

Kim Margolin, MD, disclosed that she does not have any relevant financial relationships with any commercial interests.

Arta Monjazab, MD, PhD disclosed that he has received grant/research support from Genentech, Merck, Incyte, Transgene, BMS, and EMD Serono. He also disclosed he is an Advisor/Reviewer and royalties/holder of intellectual property with MultiplexThera.

Mamta Parikh, **MD**, **MS**, disclosed that she has received grant/research support from Karyopharm. She also disclosed she is a consultant for Signatera and AstraSeneca.

Jonathan Riess, MD, MS, disclosed that

Carlos Suarez, MD, disclosed that he does not have any relevant financial relationships with any commercial interests.

Sachdev Thomas, MD, disclosed that he does not have any relevant financial relationships with any commercial interests.

Thach-Giao Truong, MD, disclosed that she does not have any relevant financial relationships with any commercial interests.

Acknowledgement of Financial Support

This activity is supported by:

Major Support

Astra Zeneca Merck & Co., Inc. Pfizer Oncology SeaGen

Additional Support

AbbVie Adaptive Biotechnologies **ADC** Therapeutics Amgen Astellas Oncology **Boehringer Ingelheim BostonGene Corporation** Bristol-Myers Squibb Oncology **CTI BioPharma** Daiichi Sankyo Inc. Eisai **Exact Sciences** Exelixis **GE Healthcare** Genentech Inc., a Member of the Roche Group Gilead Sciences, Inc. **Guardant Health Ipsen Biopharmaceuticals** Janssen Oncology Jazz Pharmaceuticals Lilly Oncology MacroGenics, Inc. Novartis Oncology PharmaEssentia Puma Biotechnology Regeneron Servier Pharmaceuticals **Stemline Therapeutics** Takeda Oncology

Challenges & Opportunities to Clinical Application of Precision Oncology Across the Cancer Care Continuum David R. Gandara, MD

NOTES

Disclosures

Commercial Interest	Relationship(s)
Amgen	Research Grant (Institutional)
Astex	Research Grant (Institutional)
Genentech	Research Grant (Institutional)
Adagene	Consultant (Institutional)
Astra Zeneca	Consultant (Institutional)
IO Biotech	Consultant (Institutional)
Guardant Health	Consultant (Institutional)
Oncocyte	Consultant (Institutional)
Roche Genentech	Advisory Board
Merck	Advisory Board
Novartis	Advisory Board
Boehringer Ingelheim	Advisory Board
Regeneron	Advisory Board
Sanofi	Advisory Board
Amgen	Advisory Board

NSCLC is particularly well suited for Precision Oncology Strategies for both Targeted Therapies & Immunotherapy

- · Genomically complex cancers with a multitude of potential oncogenes known to drive tumor growth
- Quantitatively & Qualitatively well suited for biomarker-driven checkpoint immunotherapy
- Improving the biomarker selection process in individual patients and individualizing therapy is now possible
- Newer technologies (Next Gen Sequencing/NGS) now in the clinic for both tissue & blood-based assays

Opportunity: Tumor genomic alterations approved for Targeted Therapy in the advanced stage setting across multiple cancer types

Bladder	Colorectal	GIST	Melanoma
FGFR2/3 fusions	MSI-High	KIT mutations	BRAF V600E/K
Breast	RAS mutations	PDGFRA mutations	Ovarian
PIK3CA mutations	BRAF V600E	BRAF mutations	BRCA1/2 germline & somatic
ERBB2(HER2) amplification	ERBB2(HER2) amplification	NSCLC	mutations
BRCA1/2 germline & somatic	EGER mutations	EGFR driver mutations	Pancreatic
mutations	Endometrial	ALK fusions	BRCA1/2 germline & somatic
ESR1 mutations	Endometria	ROS1 fusions	mutations
Cholangiocarcinoma	MSI-high	BRAF V600E mutations	Prostate
EGER2 fusions	ERBB2(HER2) amplification	RET fusions	BRCA1/2 germline & somatic
IDH1 mutations	Gastric/Gastroesophageal	KRAS G12C	mutations
	ERBB2(HER2) amplification	MET exon 14 skipping	Thyroid
		EGFR/ERBB2 exon 20 ins	RET fusions
		NTRK	BRAF V600E
	Courtesy of Caro	line Weipert	

Target	Prevalence	Drug	Response Rate
EGFR	15%-60%	Osimertinib	70%
ALK	5%-10%	Alectinib, Brigatinib	70%
ROS1	1%-2%	Crizotinib, Entrectinib	72%
BRAF V600E	1%-2%	Vemurafenib Dabrafenib	42% 33%
MET exon 14 mutations	3%	Capmatinib, Crizotinib ¹	44-67%
High MET amplification	3%-4%	Crizotinib ²	66%
HER2	1.7%	Afatinib ³ TDM1 ⁴ TDX-d	100% 44% 62%
RET	1%-2%	Selpercatinib (LOXO-292) ⁵ Pralsetinib (BLU-667) ⁶	80% 58%
NTRK1/2/3	3%	Entrectinib, Larotrectinib	80%
Despite these high respon All patients develop acqu . . Drilon AE et al. J Clin Oncol. 2 . .	nse rates, essentiall ired resistance, eith 2016;34(suppl 15):108. 2. Camidge et a 2018;36:2532. 5. Oriion AE et al. <i>J Cin O</i> u	y no patients are cured ner secondary resistance mutation I. J Clin Oncol. 2014;32(suppl 15):8001. 3. Mazières J et al. J Clin Oncol ncol. 2015;33(suppl 15):8007. 6. Gainor J et al. ASCO 2019. Abstract 94	s or Bypass mechanis 2013;31:1997- 08.

Tissue versus Liquid Biopsy Diagnostics Heinz-Josef Lenz, MD, FACP (Liquid) and Carlos Suarez, MD (Tissue)

NOTES

Post-treatment ctDNA Detection and CRC Recurrence After End of ACT Longitudinal Monitoring **Relapse-free Survival** Kelabse-free Survival ctDNA Recurrence Rates (%) Recurrence Rates (%) Negative 0.7 5 legative 0.5 0 0.2 tDNA Po HR=12 -271 ጊ HR=51 (CI 95% 20-125) *Р* < 0 Mos .0001 Relapse
No Relapse Mos Number at Risk umber at Risk 174 171 118 92 ctDN Negative ctDNA Negative ctDNA 50 Positive 20 30 Mos ctDNA ctDNA Positive Negative ctDNA ctDNA Positive Negative Positiv Mos Henriksen et al., ASCO GI 2021

Heterogeneity also exists within individual tumors

- Ding et al., Nature 2010
 - Mutations present in 5–90% of sequencing reads from one tumor
- Navin et al., Nature 2011
- Independent subclones coexisting in a single anatomic site in breast
- Gerlinger et al., NEJM 2012
 - Two-thirds of mutations in single biopsies were not uniformly detectable throughout all sampled regions
- Both sensitive and resistant RNA expression patterns

Molecular Testing at Time of Initial Diagnosis of Advanced Stage Cancer Eric Collisson, MD

NOTES

Cholangio

Immunophenotyping at Time of Initial Diagnosis of Advanced Stage Cancer Arta Monjazab, MD, PhD

NOTES

Precision Oncology Symposium

Disclosures

Arta M. Monjazeb has a financial interest, arrangement or affiliation with:

Name of Organization

Genentech Incyte EMD Serono Merck BMS Transgene Multiplex Thera Clinical Trial Support Clinical Trial Support, Advisory Board Clinical Trial Support Clinical Trial Support, Research Support Clinical Trial Support, Advisory Board Clinical Trial Support Consultant, Stock Options

Relationship

PRESENTED BY:

ANCO

Precision Oncology Symposium

JAMA Oncology | Original Investigation

Association of High Tumor Mutation Burden in Non-Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels

Blagio Ricclutt, MD: Xinan Wang, PhD: Joao V. Alessi, MD: Hira Rizvi, BA: Navin R. Mahadevan, MD: Yvonne Y. Li, PhD; Andrew Polio, MD; James Lindsay, MD; Renato Umeton, PhD; Rileen Sinha, PhD; Natalle I. Vokes, MD; Gornzalo Recondo, MD, PhD; Giuseppe Lamberti, MD; Marissa Lawrence, BS;

Victor R. Vaz, MD; Giulia C. Leonardi, MD; Andrew J. Plodkowski, MD; Hersh Gupta, BA;

Precision Oncology Symposium Baseline Immunophenotyping (near future directions) Patient Tumor TME (Transcriptomics / Proteomics) • **Clinical Factors** TMB / MSI – Age, Sex, BMI, "Exposome" _ TILs – PD-L1 PBMC phenotype TCR repertoire **HLA** phenotype - Lipidomics - Multiplex & Spatial Analysis Microbiome - Single Cell Analysis SNPs Blood based – TMB - PD-L1 TCR repertoire ANCO PRESENTED BY:

Molecular Testing at Time of Acquired Resistance in Oncogene-Driven Cancers—Lung Cancer, Newest Treatment Approaches for a Prototype Jonathan Riess, MD, MS

NOTES

cision Oncology Symposium	
DISCLOSURES	
Commercial Interest	Relationship(s)
Blueprint, Beigene, Daiichi Sankyo, EMD Serano, Janssen, Regeneron, Sanofi, Biodesix, Bayer, Turning Point, Bristol Myers Squibb, Jazz Pharmaceuticals, Novartis, Roche/Genentech, Boehringer Ingelheim	Consulting/Advisory Board
Merck, Boehringer Ingelheim, Novartis, AstraZeneca, Spectrum, Revolution Medicines	Research Funding (To Institution)

Precisio	on Oncology Symposium Summary of ROS1 TKIs in TKI-Naïve ROS1+			aïve ROS1+		
	Crizotinib* (PROFILE 1001)	Entrectinib* (ALKA-372-001, STARTRK-1, STARTRK-2)	Ceritinib (Korean Phase 2)	Taletrectinib (Chinese Phase 2)	Lorlatinib (Phase 1/2)	Repotrectinib [#] (TRIDENT-1 Phase 1/2)
N	53	161	20	15	21	22
ORR	72%	67% (n=108)	67%	93%	62%	91%
Median PFS	19.3 months	15.7 months	19.3 months	N/A	21.0 months	Not available
CNS activity	N/A	19/24 (79%) patients with measurable intracranial disease	2/5 (40%) patients with measurable or nonmeasurabl e intracranial disease	N/A	7/11 (64%) patients with measurable or nonmeasurabl e intracranial disease	3/3 (100%) patients with measurable intracranial disease
Reference	Shaw et al. Ann Oncol 2019	Dziadziuszko et al. JCO 2021	Lim et al. JCO 2017	Zhou C et al., ASCO 2021	Shaw et al. Lancet Oncol 2019	Cho et al. WCLC 2020; ASCO 2019
*FDA-approved	#gr	anted FDA breakthrough ti	herapy designation in 2020	PRESENTED 0 for ROS1 TKI-naïve NS	BY: CLC	Medical Oscolder Association Of Southern California, Inc.

Precision Oncology Symposium
 Take Home Messages Can sometimes match targeted treatments to rational combination strategies
 with clinical efficacy (ideally on a clinical trial). Plasma First Approach. Tissue biopsy (especially p53/rb1).
 Caveat Emptor – Can start chemo while waiting for results. Often unclear if targeted combinations better than SOC (off trial) though some molecular alterations maybe better (MET amp in EGFR, RET fusion etc).
Next gen targeted therapies promising across the board.
PRESENTED BY: PRESENTED BY: AND
21

Molecular Testing at Time of Acquired Resistance in Other Histologies—The Experience in Breast Cancer Jennifer Caswell-Jin, MD

NOTES

Precision Oncology Symposium Disclosures • Funding to my institution from: • QED Therapeutics (trying FGFR inhibition for FGFR-amplified breast cancer; program shut down) • Effector Therapeutics (trying a translation inhibitor for FGFR-amplified breast cancer)

Precision Oncology Symposium
Summary
 ER and HER2 status are how choose most of our therapies, and these can change across metastasis (~20%)
 In breast cancer, ESR1 mutations are the best example of an alteration that can appear after targeted therapy that has therapeutic implications
– But what therapeutic implications?
 There are several other examples (KMT2C, NF1, MYC for endocrine therapy; PTEN for PI3K inhibitor therapy; perhaps SLX4 for trastuzumab deruxtecan) with no therapeutic implication yet
 Breast cancers are highly heterogeneous, so we must be careful in how we interpret "changes" across treatment

Germline Molecular Testing James Ford, MD

NOTES

Germline Genetic Testing for Cancer Risk and Cancer Therapeutics

James M. Ford, MD, FASCO Professor of Medicine/Oncology and Genetics Director, Clinical Cancer Genomics Stanford University School of Medicine

- Identification of germline and familial genetic alterations that increase risk of cancer
- Development of targeted screening and early detection techniques prevent development of advanced cancers
- Incorporation of moderate and low-penetrant, common genetic variants in risk prediction and modification
- **Germline** genetic testing and risk assessment based on tumor genomic profiles
- Development of **drugs** that can effectively inhibit the function of these genetic alterations

Familial Syndromes including Breast Cancer

Syndrome	Gene	Frequency	Breast Ca Risk
НВОС	BRCA 1 & 2	1/40 - 1/400	40 - 80%
Li-Fraumeni	p53	1/5000 – 1/50K	90%+
Cowden's	PTEN	1/100,000	25 – 50%
HDGC	CDH1	Very rare	~60% (lobular)
Peutz Jeghers	STK11/LKB1		44 - 50%
Lynch Syndrome	MMR	1/440	1 - 5

5

Familial Syndromes including Colorectal Cancer

Syndrome	Gene(s)
Lynch syndrome	MLH1, MSH2, MSH6, PMS2, EPCAM
Adenomatous polyposis	
Familial Adenomatous Polyposis(FAP)	APC
Attenuated FAP	APC
MYH-associated polyposis	MYH (biallelic)
Hamartomatous polyposis	
Peutz-Jeghers Syndrome	STK11
Juvenile Polyposis Syndrome	SMAD4/BMPR1A
Cowden Syndrome	PTEN

Mu Hyp pro	ultigene Pai pothesis: A Next- vides actionable re	nel Study -Gen Sequencing esults	multiple cancer-ge	ene panel
	APC	EANCE	PMS2	
	ATM	FANCE	PRSS1	
	BLM	FANCG	PTCH1	
	BMPR1A	FANCI	PTEN	
	BRCA1	FANCL	RAD51C	
	BRCA2	LIG4	RET	
	BRIP1	MEN1	SLX4	
	CDH1	MET	SMAD4	
	CDK4	MLH1	SPINK1	
	CDKN2A	MLH2	STK11	
	EPCAM	MSH6	TP53	
	FANCA	MUTYH	VHL	
	FANCB	NBN		
	FANCC	PALB2		
	FANCD2	PALLD		

Study	N	Population	Race/Ethnicity	Gene Panel	Non-BRCA PVs	VU
Kurian <u>J Clin Oncol</u> 2014	198	Met BRCA1/2 guidelines	70% White, 20% Asian	42 genes (Invitae)	11%	88%
Tung <u>Cancer</u> 2014	2,158	Cancer genetics clinic sample	Mostly White	25 genes (Myriad)	4%	42%
Desmond <u>JAMA Oncol</u> 2015	1,046	Cancer genetics clinic sample	82% White	25 genes (Invitae)	4%	41%
LaDuca <u>Genet Med</u> 2014	2,079	Clinical testing lab database	72% White, 2-3% other	13-24 genes (Ambry)	10%	25%
Maxwell <u>Genet Med</u> 2014	278	Breast cancer, age <40	69% White, 24% Black	22 genes (Agilent)	11%	19%
Selkirk <u>Fam Cancer</u> 2014	63	Cancer genetics clinic sample	81% White	13-24 genes (Ambry)	7%	20%
Couch <u>J Clin Oncol</u> 2014	1,824	Triple-negative breast cancer	97% White	17 genes (Agilent)	4%	NR
Churpek BrCa Res Trt 2015	289	Cancer genetics clinic sample	100% Black	10 genes (BROCA)	5%	<19
Thompson <u>J Clin Oncol</u> 2016	2,000	Cancer genetics clinic sample	Not reported (Australia)	18 genes	4%	NR
Tung <u>J Clin Oncol</u> 2016	488	Breast oncology clinic sample	89% White	25 genes (Myriad)	5%	339
Norquist JAMA Oncol 2016	1,915	Ovarian cancer, unselected	89% White	20 genes (BROCA)	4%	NR
Slavin <u>NPJ Breast Ca</u> 2017	2,134	Cancer genetics clinic sample	81% White	26 genes	8%	NR
Shimelis <u>INCI</u> 2018	10,901	Triple-negative breast cancer	Most White; >1K Black	17-21 genes (Ambry)	6%	NR
Idos/Kurian <u>ICO Precis Onco</u> l 2018	2,000	Prospective clinical sample	39% Hispanic, 12% Asian	25-28 genes (Myriad)	8%	349

	# of patients with both tumor and germline	Germline mutation	Met germline testing criteria
Meric-Bernstam et al (2016)	1,000	4.3%	65%
Mandelker et al (2017)	1,040	17.5%	45%
Van Ziffle et al (2018)	1,468	14.2%	42%
Testing patients who m Important to refer all	eet criteria only, w hereditary ca individuals with po tumor testir	e will miss A ncer ossibly germl	LOT of people wi
		'9 	

e mutations not identified by guidelines alim

Indicat A movi	ions for ro ng target	eferral/testing:		
Genes	Previously	Now	Future?	Yield
BRCA1, BRCA2, PALB2, TP53, ATM, CHEK2 Others	Breast cancer <45 Triple negative breast cancer <60 Breast cancer and AJ ancestry	Breast cancer <50 Breast cancer >50+ family history Metastatic breast cancer All HER2 neg, Stage II-III Mutation on tumor testing that has implications in the germline	All patients <60 All patients with breast cancer	2.5-20%
MLH1,MSH2, EPCAM, MSH6, PMS2	MSI-H colorectal cancer MSI-H uterine cancer	CRC <50 Endometrial cancer <50 Mutation on tumor testing that has implications in the germline	All patients with CRC	10-16%
BRCA2, HOXB13 Lynch syndrome Others	Prostate cancer not a solo indication	High grade prostate cancer		12-15%
BRCA2, PALB2, ATM, Others	Pancreatic cancer not a solo indication	All pancreatic adenocarcinomas		10-12%
BRCA1, BRCA2, RAD51C, RAD51D, BRIP1	All epithelial ovarian cancers	—		15-20%

Summary and Conclusions

- ~10% of most common cancers will have potentially targetable DNA repair defects associated with germline genetic mutations
- Germline > Somatic alone
- Poorly predicted by age, family history
- Consider screening high-risk individuals
- Prognostic and predictive value
- Role for checkpoint inhibitors, PARP inhibitors, others

Detection Of Post-Surgical Minimal Residual Disease (MRD) And Actionability In GI Chloe Atreya, MD, PhD

NOTES

Precision Oncology Symposium

Disclosures

Research support (institution): Merck, Bristol Meyer Squibb, Erasca, Guardant Health, Gossamer Bio

Scientific Advisory Board: Foundation Medicine, Inivata, Pionyr Immunotherapeutics, Sumitomo Pharma

Honoraria: More Health, Research to Practice, OncLive

Precisi	ision Oncology Symposium			
	Prognostic Utility	y of ctDNA in Rese	cted Colorectal Cancer	
	Study	Stage	Recurrence Risk (Detectable Post-op ctDNA)	
	Henriksen et al, ASCO GI 2021	1-111	HR 11.0, 95% CI 5.9-21.0	
	Parikh et al, Clin Cancer Res. (2021)	1-111	HR 11.2, P<0.0001	
	Tie et al, Science Transl Med. (2016)	II	HR 18, 95% CI 7.9-40	
	Tie et al, JAMA Oncol. (2019)	111	HR 3.8, 95% CI 2.4-21.0	
	Henriksen et al, ASCO 2021	Ш	HR 7.2, 95% CI 3.8-13.8	
	Overman et al, ASCO 2017	IV – post liver metastectomy	HR 3.1, 95% Cl 1.7-9.1	
	Tie et al, PLoS One. (2021)	IV – post liver metastectomy	HR 6.3, 95% CI 2.6-15.2	
	Chee et al, ASCO 2021	IV – post locoregional	HR 5.6, 95% CI 2.3-13.7	
	Yukami et al, ASCO 2021	IV – post locoregional	OR 16.9, 95% CI 2.3-197.4	
	Loupakis et al, JCO PO. (2021)^	IV – post locoregional	HR 5.8, 95% CI 3.5-9.7	
	Nimeiri et al, ASCO GI 2022^	IV	HR 5.0, 95% CI 2.7-9.2	
	Kotaka et al, ASCO GI 2022	I-IV	HR 13.3, 95% CI 8.0-22.2	
	^Same cohort but different assay and follow-up Credit: Dr. Aparna Parikh, used with permission		PRESENTED BY: PRESENTED BY:	IENCAL OXCOLOGY ASSOCIATION OF OUTHERN CALIFORNIA, INC.

cision Oncology Symposium			
What Proportion of Recurrences Are Predicted With Post-Op ctDNA?			
Study	Stage	Proportion of recurrences detected immediately post-op	
Henriksen et al, ASCO GI 2021	I-111	7/17 (41.2%) recurrences ctDNA positive post-op	
Parikh et al, Clin Cancer Res. (2021)	1-111	15/27 (55.6%) recurrences ctDNA positive post-op	
Tie et al, Sci Transl Med. (2016)	II	11/30 (36.7%) recurrences ctDNA positive post-op	
Tie et al, JAMA Oncol. (2019)	III	10/25 (40%) recurrences ctDNA positive post-op	
Overman et al, ASCO 2017	IV	31/54 (57%) recurrences ctDNA positive post-op	
Tie et al, PLoS One. (2021)	IV	10/21 (47.6%) recurrences ctDNA positive post-op	
Chee et al, ASCO 2021	IV	23/29 (79.3%) recurrences ctDNA positive post-op	
Yukami et al, ASCO 2021	IV	6/7 (85.7%) recurrences ctDNA positive post-op*	
Loupakis et al, JCO PO. (2021)^	IV	59/82 (72.0%) recurrences ctDNA positive post-op**	
Nimeiri et al, ASCO GI 2022^	IV	29/49 (60.4%) recurrences ctDNA positive post-op	
Kotaka et al, ASCO GI 2022	I-IV	91/143 (63.6%) recurrences ctDNA positive post-op	
ame cohort but different assay and follow-up edit: Dr. Aparna Parikh, used with permission	•Median follow up only 4.2 months **Median follow up of only 10.7 mc ^Same cohort but different assay a	and follow up PRESENTED BY: ANCO	

Does Adjuvant Chemotherapy Clear MRD?			
Study	Stage	Ability of Adjuvant Therapy to Convert ctDNA+ to ctDNA-	
Reinert et al, JAMA Oncol. (2020)	1-111	3/10 (30%) ctDNA positive post-op cleared	
Parikh et al, Clin Cancer Res. (2021)	1-111	1/6 (16.7%) ctDNA positive post-op cleared	
Tie et al, Sci Transl Med. (2016)	II	3/6 (50%) ctDNA positive post-op cleared	
Tie et al, JAMA Oncol. (2019)		5/20 (25%) ctDNA positive post-op cleared	
Henriksen et al, ASCO 2021		4/20 (20%) ctDNA positive post-op cleared	
Tie et al, PLoS One. (2021)	IV	3/11 (27.3%) ctDNA positive post-op cleared	
Kotaka et al, ASCO GI 2022	I-IV	65/96 (68%) ctDNA positive post-op cleared!	

Does Adjuvant Chemotherapy Clear MRD?				
Study	Stage	Ability of Adjuvant Therapy to Convert ctDNA+ to ctDNA-		
Reinert et al, JAMA Oncol. (2020)	1-111	3/10 (30%) ctDNA positive post-op cleared		
Parikh et al, Clin Cancer Res. (2021)	1-111	1/6 (16.7%) ctDNA positive post-op cleared		
Tie et al, Sci Transl Med. (2016)	II	3/6 (50%) ctDNA positive post-op cleared		
Tie et al, JAMA Oncol. (2019)	111	5/20 (25%) ctDNA positive post-op cleared		
Henriksen et al, ASCO 2021	III	4/20 (20%) ctDNA positive post-op cleared		
Tie et al, PLoS One. (2021) IV 3/11 (27)		3/11 (27.3%) ctDNA positive post-op cleared		
Kotaka et al, ASCO GI 2022	I-IV	65/96 (68%) ctDNA positive post-op cleared!		

ecision Oncology Symposium							
	What To Do With ctDNA Results? (stage II/III CRC)						
	Australia Stage II	Australia / Canada Stage III	US / Canada Stage II	US Stage III	Germany/ Austria/ Sweden Stage II	Netherlands Stage II Iow risk	
Name	DYNAMIC	DYNAMIC III	COBRA	Circulate-US	CIRCULATE	MEDOCC- CrEATE	ESCALATE: Need high specificity
Assay	Safe-SeqS	Safe-SeqS	Guardant Reveal	Natera Signatera	Dresden NGS	PDGx elio	PPV >90-95%
Methodology	Escalate	De-escalate or escalate	Escalate	De-escalate and escalate	Escalate	Escalate	DE-ESCALATE:
De- escalation to:	n/a	Multiple options depending on pre-specified plans	n/a	5-FU single agent preferred	n/a	n/a	Need high sensitivity
Escalate to:	Chemo	Multiple options	FOLFOX x6m	FOLFOXIRIx6 m	Chemo	Chemo	
Sample size	450	1000	1400	~ 2000	3609 stage II (4812 screen)	1320	
Phase	Ш	II	Ш	III	III	111	
Dr Aparna Parikh, used with permission; slide adapted from Dr. Scottt Kopetz PRESENTED BY:							

cision Oncology Symposium							
What To Do With ctDNA Results? (stage II/III CRC) France Japan UK Denmark Denmark Italy							
	Stage II	Stage III	Stage II/III	Low risk Stage I/ II	High risk stage II or Stage III	Stage II HR /III	
Name	CIRCULATE- Prodige	CIRCULATE- Japan / VEGA	TRACC	IMPROVE-IT	IMPROVE- IT2	Pegasus-0	In the US, Medicare 8 Medicaid endorse
Assay	Methylation probes x 2	Natera Signatera	In house NGS	Natera Signatera	Natera Signatera	Torino assay	reimbursement for
Methodology	Escalate	Escalate and de-escalate	Escalate	Escalate	Escalate	Assigned based on ctDNA	Colorectal cancer
De- escalation to:	n/a	No therapy	No therapy	Observation	n/A	5FU	
Escalate to:	Chemo	n/a	n/a	CAPOX	More intensive imaging	CAPOX	
Sample size	1980	1240	1621	64	254	140	
Phase	Ш	Ш	Ш	Ш	Ш	II	
Aparna Parikh, used wit	h permission; slide ada	pted from Dr. Scottt Ko	opetz		PRESENT	ED BY:	ANCO Beneficial December Asso Beneficial Strength Control State

Precision Oncology Symposium						
Conclusions						
 Detection of post-surgical MRD with ctDNA(+) is prognostic in esophageal, pancreas and colorectal cancer Many adjuvant tx escalation and de-escalation strategies are being evaluated in stage II/III CRC (fewer for stage IV CRC & other GI cancers) 						
 Actionability strongest for stage II CRC (DYNAMIC study: Tie J, et al. ASCO 2022. Abstract LBA100) > ctDNA(-) and low clinical risk: no adjuvant chemo > ctDNA(+): adjuvant chemo improves RFS 						
Harmonization of ctDNA and imaging time-points is needed						
 Further information: 2022 ASCO Ed book 	American Society of Clinical Oncology Educational Book. > List of Issues. > Volume 42. > GASTROINTESTINAL CANCER—GASTROESOPHAGEAL, PANCREATIC, AND HEPATOBILIARY					
	Circulating Tumor DNA: An Emerging Tool in					
	Olatunji B. Alese, MD, FWACS ¹ Cook, MD, PhD ^{2,3} ; Ana Ortega-Franco, MD ² ; Mark B. Ulanja, MD, MPH ⁴ ; Lavinia Tan, MBBS, FRACP ^{5,6} ; and Jeanne Tie, MBChB, MD, FRACP ^{5,6,7}					

Detection Of Post-Surgical Minimal Residual Disease (MRD) And Actionability In GU Mamta Parikh, MD

NOTES

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Cellular Therapy in Solid Tumors Mohamed Abou-el-Enein, MD, PhD, MSPH

NOTES

10/31/22

Children's Hospital Los Angeles	USC Norris Comprehensive Cancer Center Kesk Melters of 188	CAR T cells in solid tumors
ORIGINAL ARTICLE VOLUME 18. ISSUE 4, P843-851, APRIL 01, 20 Case Report of a Serious Adverse Administration of T Cells Transdu Receptor Recognizing <i>ERBB2</i> Richard A Morgan A □ + James C Yang + Mio Kitang Steven A Rosenberg Open Archive + DOI: https://doi.org/10.1038/mt.2010.24	• Event Following the ced With a Chimeric Antigen • Mark E Dudley • Carolyn M Laurencot • Article Open Access Published: 09 May	2022 APT cells in gastrointestinal
Article Open Access Published: 07 February	Claudin 18.2-Specific CA cancers: phase 1 trial in Changsong Qi, Jifang Gong, Jian Li, Dan Liu Yanshuo Cao, Xiaotian Zhang, Zhihao Lu, M Peng, Huiping Gao, Zhen Liu, Huamao Wan 2022	IK I CEIIS IN GASTROINTESTINAI terim results 1, Yanru Qin, Sai Ge, Miao Zhang, Zhi Peng, Jun Zhou, 1 ing Lu, Jiajia Yuan, Zhenghang Wang, Yakun Wang, Xiaohui 19, Dajjing Yuan, Jun Xiao, Hong Ma, Wei Wang, Lin Shen
GD2-CAR T cell therapy fo midline gliomas	r H3K27M-mutated diffu	Se ž
M. Schultz, Rebecca M. Richards, Li Jiang, Valen Zinaida Good, Aaron Y. Mochizuki, Shawn M. Gill Reschke, Esther H. Nie, Isabelle J. Chau, Maria C Baggott, Sharon Mavroukakis, Emily Egeler, M	tin Barsan, Rebecca Mancusi, Anna C. Geragh Espie, Angus Martin Shaw Toland, Jasia Mahdi aterina Rotiroti, Christopher W. Mount, Christir chelle Monje 🖂 🔶 + Show authors	X, X, na
Nature 603, 934–941 (2022) Cite this article 33k Accesses 52 Citations 390 Altmetric	Metrics	4

Application of Precision Medicine to Early Diagnosis & Screening Mohammed Kashani-Sabet, MD

NOTES

Talk Outline

- Improving precision in melanoma
 - Susceptibility
 - Role of NCOA3
 - Diagnosis
 - Role of artificial intelligence (AI) in melanoma diagnosis
 - Prognostic assessment
 - Role of gene expression profiling (GEP) assay
 - Role of mitotic rate

Nuclear Receptor Coactivator-3 (NCOA3)

- Member of nuclear hormone receptor coactivator family that interacts with nuclear receptors to promote gene expression
- Overexpressed in metastatic melanomas by gene expression profiling
- Demonstrated prognostic role in melanoma – First molecular marker to predict SLN status

Haqq, PNAS 2005; Rangel JCO 2006; Kashani-Sabet, CCR 2009, CCR 2017

- Role for NCOA3 T960T polymorphism in breast cancer susceptibility
- Prevalence of T960T polymorphism in U. of Utah cohort of familial melanoma lacking germline mutations in CDKN2A lower than control cohort without cancer
- Prevalence significantly lower in Sub-Saharan Africans vs. Caucasians
- T960T polymorphism present in 2/23 melanoma cell lines and 0/53 tumors

AI for Skin Cancer- Rationale

- Growing shortage of dermatologists per capita
- Potential access to large number of skin cancer images, with accompanying annotation (including dermoscopic images)
- In the case of melanoma, diagnostic accuracy of expert unaided visual inspection around 60%, which can be increased to 75-84% with dermoscopy

- Esteva et al., Nature, 542: 115, 2017
- Dataset of 127,463 training and validation images, and 1,942 biopsy-labeled test set; AI-based algorithm
- Two main questions
 - Lesion benign or malignant?
 - Biopsy/treat or reassure?
- AI- AUC over 91%, on par with derms' performance, and outperforms derm average

Siddhartha I	Mukherj	ee <u>46</u>	ANNALS OF MEDICINE The Algorithm Will See When it comes to diagnosis,	You Now will A.I. replace the M.D.?
	LATEST POPULA	r Q search	THE NEW YORKER	TNY STORE
Wbi	ANNALS OF MEI A.I. VE at happens wh By Siddl f	Dicine Afrill 3 CRSUS N bien diagnosis nartha Mukhe	2017 ISSUE M.D. is automated? rjee	

Deep learning of suspicious pigmented lesions (SPL)

- Developed SPL analysis system for wide-field images using AI, applied to >38,000 dermatological dataset from 133 pts and publicly available images
- Obtained from consumer cameras and rated by dermatologists
- 90.3% sensitivity; 89.9% specificity in distinguishing SPLs from benign lesions
- Developed method to extract intrapatient differences (ugly ducking sign), with 82% agreement with dermatologists' ranking of atypical lesions

Soenksen, Sci. Transl. Med., 2021

Gene Expression Profiling (GEP) Assay in Melanoma Prognosis

- Prognostic impact of 31-gene expression signature in primary melanomas in retrospective cohort of 217 pts undergoing sentinel lymph node (SLN) biopsy
- Read out: molecularly defined low-risk (class 1) and high-risk (class 2) scores
- GEP score was significantly correlated with OS, and may be combined with SLN status to identify patients with differing risks of metastasis

Gerami, JAAD, 2015

Use of GEP to Predict SLN Status

Two SLNB pt cohorts (N=584 and 837) Look at T1 (< 1 mm thick) and T2 (1-2 mm thick) lesions combined

Age	SLN Positivity (class 1a)	SLN Positivity (class 2b)
< 55	9.9%	24%
55-64	7.1%	33.3%
<u>></u> 65	2.2%	12.5%

Received Medicare coverage approval in 2018, based on positivity cut-off of 5%

Vetto, Future Oncology, 2019

Issues with GEP Studies

- Switching between different endpoints-RFS, DMFS, OS, MSS, SLN status
- Inclusion of heterogeneous patient subsets (node-positive vs. node-negative patients, and differing T categories)
- No adjuvant therapy or imaging implications identified of profiling results
- Contrast with development path in BRCA

Improving the Prognostic Impact of Mitotic Rate in Melanoma

- Mitotic rate has known prognostic significance
- Incorporated as a T1b-defining feature in AJCC 7th edition, but removed in 8th edition
- Mitotic rate is a continuous variable (similar to thickness); hence, identifying its optimal cutpoint is critical for a defined patient subset
- Neither the optimal cut-points for the entire scale of mitotic rate, nor for different tumor thickness subgroups, had been defined

Shape of relationship between various prognostic factors and survival

- Tumor thickness has a non-linear relationship with survival
 - AJCC-defined cut-points of 1, 2, and 4 mm
- Mitotic rate also has a non-linear relationship with survival
 - Optimal cut-points of 1, 2, 4, 7, and $11/mm^2$
- Constructed index using these cut-points to analyze impact of mitotic rate on survival vs. impact when assessed as a continuous variable
- Then performed similar analyses in randomly generated training and validation cohorts (2025 patients each)

Multivariate Cox Regression Analysis of Survival- Validation Set							
Covariate	Chi- square	Relative risk	Р	Covariate	Chi- square	Relative risk	Р
Thickness	218	1.69	< 0.0001	Thickness	138	1.58	< 0.0001
Ulceration	46	1.60	< 0.0001	Mitotic rate (index of cut- points)	42	5.38	< 0.0001
Mitotic rate (entire scale)	25	1.02	< 0.001	Ulceration	39	1.55	<0.0001

